设函数f(x)的定义域为D,f(x)在集合D上有定义。如果存在数K1,使得 f(x)≤K1对任意x∈D都成立,则称函数f(x)在D上有上界。
反之,如果存在数字K2,使得 f(x)≥K2对任意x∈D都成立,则称函数f(x)在D上有下界,而K2称为函数f(x)在D上的一个下界。
连续函数在闭区间具有有界性。 例如: y=x+6在[1,2]上有最小值7,最大值8,所以说它的函数值在7和8之间变化,是有界的,所以具有有界性。但正切函数在有意义区间,比如(-π/2,π/2)内则无界。
扩展资料:
如果存在数K1,使得 f(x)≤K1对任意x∈D都成立,则称函数f(x)在D上有上界。
反之,如果存在数字K2,使得 f(x)≥K2对任意x∈D都成立,则称函数f(x)在D上有下界,而K2称为函数f(x)在D上的一个下界。
如果存在正数M,使得 |f(x)|≤M 对任意x∈D都成立,则称函数在X上有界。如果这样的M不存在,就称函数f(x)在X上无界;等价于,无论对于任何正数M,总存在x1属于X,使得|f(x1)|>M,那么函数f(x)在X上无界。
有界性大致就是函数值有一个确定范围的意思。
一般来说,连续函数在闭区间具有有界性。
例如:
y=x+1在[1,2]上有最小值2,最大值3,所以说它的函数值在2和3之间变化,是有界的,所以具有有界性。
对于一个函数F(x),如果在定义域D内,满足a《F(x)《b,
则称F(x)在D内有界。
例如:
对于函数f(x)=arcsin x,
对于实数范围内的任意x,始终有
-1《f(x)《1
则f(x)有界。