(Ⅰ)∵an+1=
+2an,
a
∴an+1+1=(an+1)2,
两边取对数可得lg(an+1+1)=2lg(an+1);
又a1=2,∴数列{lg(an+1)}是以lg3为首项,2为公比的等比数列.
∴lg(an+1)=2n?1lg3,即an+1=32n?1;
∴数列{an}的通项公式为an=32n?1?1;
(Ⅱ)由an+1=
+2an,两边同取倒数可得
a
=2 an+1
?1 an
,即1
an+2
=1
an+2
?1 an
,2 an+1
∴bn=2(
?1 an
),1 an+1
∴Sn=2[(
?1 a1
)+(1 a2
?1 a2
)+…+(1 a3
?1 an
)]=2(1 an+1
?1 a1
)=1-1 an+1
2 3