一、线性代数如果注意以下几点是有益的.
由易而难 线性代数常常涉及大型数组,故先将容易的问题搞明白,再解决有难度的问题,例如行列式定义,首先将3阶行列式定义理解好,自然可以推广到n阶行列式情形;
由低而高 运用技巧,省时不少,无论是行列式还是矩阵,在低阶状态,找出适合的计算方法,则可自如推广运用到高阶情形;
由简而繁 一些运算法则,先试用于简单情形,进而应用于复杂问题,例如,克莱姆法则,线性方程组解存在性判别,对角化问题等等;
由浅而深线性代数中一些新概念如秩,特征值特征向量,应当先理解好它们的定义,在理解基础之上,才能深刻理解它们与其他概念的联系、它们的作用,一步步达到运用自如境地。
二、注重对基本概念的理解与把握,正确熟练运用基本方法及基本运算。
1、线性代数的概念很多,重要的有:
代数余子式,伴随矩阵,逆矩阵,初等变换与初等矩阵,正交变换与正交矩阵,秩(矩阵、向量组、二次型),等价(矩阵、向量组),线性组合与线性表出,线性相关与线性无关,极大线性无关组,基础解系与通解,解的结构与解空间,特征值与特征向量,相似与相似对角化,二次型的标准形与规范形,正定,合同变换与合同矩阵。
2、线性代数中运算法则多,应整理清楚不要混淆,基本运算与基本方法要过关,重要的有:
行列式(数字型、字母型)的计算,求逆矩阵,求矩阵的秩,求方阵的幂,求向量组的秩与极大线性无关组,线性相关的判定或求参数,求基础解系,求非齐次线性方程组的通解,求特征值与特征向量(定义法,特征多项式基础解系法),判断与求相似对角矩阵,用正交变换化实对称矩阵为对角矩阵(亦即用正交变换化二次型为标准形)。
三、注重知识点的衔接与转换,知识要成网,努力提高综合分析能力。
线性代数从内容上看纵横交错,前后联系紧密,环环相扣,相互渗透,因此解题方法灵活多变,学习时应当常问自己做得对不对?再问做得好不好?只有不断地归纳总结,努力搞清内在联系,使所学知识融会贯通,接口与切入点多了,熟悉了,思路自然就开阔了。
四、注重逻辑性与叙述表述
线性代数对于抽象性与逻辑性有较高的要求,通过证明题可以了解学生对数学主要原理、定理的理解与掌握程度,考查学生的抽象思维能力、逻辑推理能力。大家学习整理时,应当搞清公式、定理成立的条件,不能张冠李戴,同时还应注意语言的叙述表达应准确、简明。
第一章 行列式求法,最简单的了,不说了。
第二章 矩阵,概念弄懂,会求矩阵的秩,会将一个矩阵化成行最简型矩阵(阶梯形矩阵)即可。
第三章 线性方程组,会通过考察矩阵的秩,进而讨论方程组:无解,有唯一解,有无穷多解。这三种情况。其中,若方程有无穷多解,则通解的无关解向量就有n-r个。n为矩阵的阶数,r为矩阵的秩。
第四章 向量,解向量和对应矩阵的关系。讨论向量无关的一些条件,若存在一组不全为0的数k1、k2...kn使得,k1*a1+k2*a2+...+kn*an=0,则称向量组a1、a2...an线性相关。如果k1、k2...kn全为0,则线性无关。
第五章 特征值和特征向量,懂得特征值的求法,了解特征值和矩阵的秩的关系,通过特征值的个数,以及重根数,判断线性方程的无关解的个数,进而求出通解,在书上找到一个经典例题即可,期末考试绝对不难。
第六章 二次型,了解正贯系数和秩的关系,正贯系数的求法,二次型的经典写法,以及二次型与矩阵的秩的关系。正定矩阵简单看看即可,应该不会考,又不是考研,不会考那么多。如果要考正定矩阵的话,记住f(x)>0,其正贯系数均大于0。
线性代数应该是大学数学课程中最好学的一门了,诚如楼上所言,属于那种突击几天就能过的那种......把那些什么线性相关、线性无关的基本定义搞明白,把最后那章的习题搞定就差不多了。当然,你如果能把线性空间那套规则搞掂就说明你已进入我这种高手的行列......:)
我学线性代数的那个学期根本什么都没听懂,可我考前看了一下午,期末没挂。
话说我的线性代数也学的很烂,不过幸运的是期末没挂、总结的说,一是遇到善良的老师了,二是考前抱了下佛脚,做了几套习题