七年级下册数学期末试卷

2024-12-04 19:05:10
推荐回答(5个)
回答1:

楼上的,那么计较干嘛?提问者这叫简洁、、、、是不

七年级下期期末数学测试题
学校 班别 姓名 学号

一、选择题:(每小题3分,共30分)
1.若m>-1,则下列各式中错误的是( )
A.6m>-6 B.-5m<-5 C.m+1>0 D.1-m<2
2.已知a>b>0,那么下列不等式组中无解的是( )
A. B. C. D.
3. 不等式14x-7(3x-8)<4(25+x)的负整数解是( )
A.a>0 B.a<0 C.a>-2009 D.a<-2009
4.一辆汽车在公路上行驶,两次拐弯后,仍在原来的方向上平行行驶,那么两个拐弯的角度可能为 ( )
(A) 先右转50°,后右转40° (B) 先右转50°,后左转40°
(C) 先右转50°,后左转130° (D) 先右转50°,后左转50°
5.解为 的方程组是( )
A. B. C. D.
6.如图,在△ABC中,∠ABC=500,∠ACB=800,BP平分∠ABC,CP平分∠ACB,则∠BPC的大小是( )
A.1000 B.1100 C.1150 D.1200

(1) (2) (3)
7.四条线段的长分别为3,4,5,7,则它们首尾相连可以组成不同的三角形的个数是( )
A.4 B.3 C.2 D.1
8.在各个内角都相等的多边形中,一个外角等于一个内角的 ,则这个多边形的边数是( )
A.5 B.6 C.7 D.8
9.如图,△A1B1C1是由△ABC沿BC方向平移了BC长度的一半得到的,若△ABC的面积为20 cm2,则四边形A1DCC1的面积为( )
A.10 cm2 B.12 cm2 C.15 cm2 D.17 cm2
10.课间操时,小华、小军、小刚的位置如图1,小华对小刚说,如果我的位置用(0,0)表示,小军的位置用(2,1)表示,那么你的位置可以表示成( )
A.(5,4) B.(4,5)¬ C.(3,4)¬ D.(4,3)
二、填空题:(每小题4分,共20分)
11.若三角形的三边长分别为3,4,x-1,则x的取值范围是 .
12.不等式5x-9≤3(x+1)的解集是________.
¬13.如果点P(a,2)在第二象限,那么点Q(-3,a)在第_______象限.
¬14.从A沿北偏东60°的方向行驶到B,再从B沿南偏西20°的方向行驶到C,则∠ABC=_______度.
15.给出下列正多边形:① 正三角形;② 正方形;③ 正六边形;④ 正八边形.用上述正多边形中的一种能够辅满地面的是_____________.(将所有答案的序号都填上)
三、解答题:(16~19题每题5分,20~24题每题6分)
16.解不等式组: ,并把解集在数轴上表示出来.

17.解方程组:

18.如图, AD∥BC , AD平分∠EAC,你能确定∠B与∠C的数量关系吗?请说明理由。

¬19.如图,已知D为△ABC边BC延长线上一点,DF⊥AB于F交AC于E,∠A=35°,∠D=42°,求∠ACD的度数.

¬

20.如图, 已知A(-4,-1),B(-5,-4),C(-1,-3),△ABC经过平移得到的△A′B′C′,△ABC中任意一点P(x1,y1)平移后的对应点为P′(x1+6,y1+4)。
(1)请在图中作出△A′B′C′;
(2)写出点A′、B′、C′的坐标; ¬
(3)求△A′B′C′的坐标.

21.某师范大学为了解该校数学系1000名大学生每学期参加社会实践活动的时间,随机对该系50名大学生进行了调查,结果如下表:

时间/天 4 5 6 7 8 9 10 11 12 13
人数 1 2 4 5 7 11 8 6 4 2
并绘制了如下的频数分布表和频数分布直方图.
分组 频数 百分比

3.5~5.5 3 6%
5.5~7.5 18%
7.5~9.5 18 36%
9.5~11.5
11.5~13.5 6 12%
合计 50 100%
根据以上提供的信息,解答下列问题:
(1)补全频数分布表;
(2)补全频数分布直方图;
(3)请你估算这所大学数学系的学生中,每学期参加社会实践活动的时间不少于10天的大约有多少人?

22.长沙市某公园的门票价格如下表所示:
购票人数 1~50人 51~100人 100人以上
票价 10元/人 8元/人 5元/人
某校九年级甲、乙两个班共100多人去该公园举行毕业联欢活动,其中甲班有50多人,乙班不足50人,如果以班为单位分别买门票,两个班一共应付920元;如果两个班联合起来作为一个团体购票,一共要付515元,问甲、乙两班分别有多少人?

23.某机械厂共有120名生产工人,每个工人每天可生产螺栓50个或螺母20个,如果一个螺栓与两个螺母配成一套,那么每天安排多少名工人生产螺栓,多少名工人生产螺母,恰好能是每天生产出来的产品配成一套?

24.某储运站现有甲种货物1530吨,乙种货物1150吨,安排用一列货车将这批货物运往青岛,这列货车可挂A,B两种不同规格的货厢50节.已知甲种货物35吨和乙种货物15吨可装满一节A型货厢,甲种货物25吨和乙种货物35吨可装满一节B型货厢,按此要求安排A,B两种货厢的节数,有哪几种运输方案?请设计出来.

答案
一、选择题:(共30分)
BCDDD,CBBCD
二、填空题:(共24分)
11.213.三 14. 40
15. ①②③
三、解答题:(共46分)
16. 解:第一个不等式可化为
x-3x+6≥4,其解集为x≤1.
第二个不等式可化为
2(2x-1)<5(x+1),
有 4x-2<5x+5,其解集为x>-7.
∴ 原不等式组的解集为-7<x≤1.
把解集表示在数轴上为:

17. 解:原方程可化为

两方程相减,可得 37y+74=0,
∴ y=-2.从而 .
因此,原方程组的解为
18. ∠B=∠C。 理由:
∵AD∥BC
∴∠1=∠B,∠2=∠C
∵∠1=∠2
∴∠B=∠C
19. ¬ 解:因为∠AFE=90°,
所以∠AEF=90°-∠A=90°-35°=55°.
所以∠CED=∠AEF=55°,
所以∠ACD=180°-∠CED-∠D
=180°-55°-42=83°.
20.(1) A′(2,3),B′(1,0),C′(5,1).
(2)如右图
(3)如图,过点B′作B′D⊥x轴,过点A′
作DE平行x轴,交B′D于点D,过点C′作
FE⊥x轴,交DE于点E,则B′D=3,DE=4,
FE=3
S△A′B′C′= SDB′C′E- S△DB′A′-S△EA′C′-S△B′C′F
= B′C′•DB′- DA′•DB′- A′E•EC′- B′F•C′F
=4×3- ×1×3- ×3×2- ×4×1
=12-1.5-3-2
=5.5
21.(1)
分组 频数 百分比
3.5~5.5 3 6%
5.5~7.5 9 18%
7.5~9.5 18 36%
9.5~11.5 14 28%
11.5~13.5 6 12%
合计 50 100%
(2)

(3)
22. 解:设甲、乙两班分别有x、y人.
根据题意得
解得
答:甲班有55人,乙班有48人.
23.解:设每天安排x名工人生产螺栓,y名工人生产螺母。

解得
答:每天安排20名工人生产螺栓,100名工人生产螺母,恰好能是每天生产出来的产品配成一套。
24. 解:设用A型货厢x节,则用B型货厢(50-x)节,由题意,得

解得28≤x≤30.
因为x为整数,所以x只能取28,29,30.
相应地(5O-x)的值为22,21,20.
所以共有三种调运方案.
第一种调运方案:用 A型货厢 28节,B型货厢22节;
第二种调运方案:用A型货厢29节,B型货厢21节;
第三种调运方案:用A型货厢30节,用B型货厢20节
可以吗 望采纳

回答2:

【模拟试题】(答题时间:60分钟)
一、选择题
1.给出下列说法:
①两条直线被第三条直线所截,同位角相等
②平面内的一条直线和两条平行线中的一条相交,则它与另一条也相交
③相等的两个角是对顶角
④从直线外一点到这条直线的垂线段,叫做这点到直线的距离
其中正确的有 【 】
A.0个 B.1个 C.2个 D.3个
2.如图,AB⊥BC,BD⊥AC,能表示点到直线(或线段)的距离的线段有 【 】

A.1条 B.2条 C.4条 D.5条
3.过A(4,-2)和B(-2,-2)两点的直线一定【 】
A.垂直于x轴 B.与y轴相交但不平行于x轴
C.平行于x轴 D.与x轴、y轴都平行
4.已知三角形的三个顶点坐标分别是(-1,4),(1,1),(-4,-1),现将这三个点先向右平移2个单位长度,再向上平移3个单位长度,则平移后这三个顶点的坐标是【 】
A.(-2,2),(3,4),(1,7) B.(-2,2),(4,3),(1,7)
C.(2,2),(3,4),(1,7) D.(2,-2),(3,3),(1,7)
5.以7和3为两边的长,另一边长为整数的三角形一共有【 】
A.3个 B.4个 C.5个 D.6个
6.三角形一个外角小于与它相邻的内角,这个三角形是 【 】
A.直角三角形 B.锐角三角形 C.钝角三角形 D.不能确定
7.4根火柴棒形成如图所示的“口”字,平移火柴棒后,原图形能变成的象形汉字是【 】

8.点P(x+1,x-1)一定不在 【 】
A.第一象限 B.第二象限 C.第三象限 D.第四象限
9.如果一个多边形除了一个内角外,其余各角的和为2030°,则这个多边形的边数是【 】
A.12条 B.13条 C.1 4条 D.15条
10.如果∠A和∠B的两边分别平行,那么∠A和∠B的关系 【 】
A.相等 B.互余或互补 C.互补 D.相等或互补

二、填空题
1.如图所示,由点A测得点B的方向为_______

2.如图所示,BE是AB的延长线,量得∠CBE=∠A=∠C
(1).由∠CBE=∠A可以判断_____∥______,根据是________,
(2).由∠CBE=∠C可以判断_____∥______,根据是________,

3.如图所示,直线L1∥L2,AB⊥L1,垂足为点O,BC与L2相交于点E,若∠1=43°,则∠2=____

4.如图,直线a∥b,点B在直线b上,且AB⊥BC,∠1=55°,则∠2=_____

5.把一副三角板按如图所示的方式摆放,则两条斜边所成的钝角x为_______

6.在多边形的内角中,锐角的个数不能多于_____
7.若一个正多边形的每一个外角都是30°,则这个正多边形的内角和等于_____
8.已知点A(a,0)和点B(0,5)两点,且直线AB与坐标轴围成的三角形的面积等于10,则a的值是_____
9.等腰三角形ABC的边长分别为4cm,3cm,则其周长为_____
10.如图,AB=A1B,A1C=A1A2,A2D=A2A3,A3E=A3A4,∠B=20°,则∠EA3A4的度数是____

三、 解答题
1.如图,当光线从空气中射入水中时,光线的传播方向发生了变化,在物理学中这种现象叫做光的折射,在图中,∠1=43°,∠2=27°,试问光的传播方向改变了多少度?

2.如图,已知∠1+∠2=180°,∠3=∠B,试判断∠AED与∠C的关系

3.解答下列各题
(1).已知点P(a-1,3a+6)在y轴上,求点P的坐标
(2).已知两点A(-3,m),B(n,4),若AB∥x轴,求m的值,并确定n的范围
4.在如图所示的直角坐标系中,三角形ABC的顶点坐标分别是A(0,0)、B(6,0)、C(5,5)
(1).求三角形ABC的面积
(2).如果将△ABC向上平移3个单位长度,得到△A1B1C1,再向右平移2个单位长度,得到△A2B2C2,分别画出△A1B1C1和△A2B2C2,并求出A2、B2、C2的坐标

5.一个多边形的内角和是它的外角和的4倍,求
(1).这个多边形是几边形
(2).这个多边形共有多少条对角线
6.在△ABC中,∠A:∠B:∠C=3:4:5,BD、CE分别是AC、AB边上的高,BD、CE相交于点H,求∠BHC的度数

【试题答案】
一.选择题
1.B 2.D 3.C 4.A 5.C 6.C 7.B 8.B
9.C 10.D

二.填空题
1.南偏东60° 2.(1).AD∥BC 同位角相等,两直线平行
(2).CD∥AE 内错角相等,两直线平行 3.133° 4.35° 5.165°
6.3个 7.1800° 8.4或-4 9.10cm或11cm 10.160°

三.解答题
1.解析:

若光路不发生改变,则∠BFD=∠1=43°,光路改变后,∠2=27°
则∠DFE=∠BFD-∠2=43°-27°=16°,所以光的传播方向改变了16°
2.解析:

∵∠2+∠ADF=180°(邻补角)
又∵∠1+∠2=180°(已知)
∴∠1=∠ADF(同角的补角相等)
∴AB∥EG(同位角相等,两直线平行)
∴∠3=∠ADE(两直线平行,内错角相等)
又∵∠3=∠B(已知)
∴∠B=∠ADE(等量代换)
∴BC∥DE(同位角相等,两直线平行)
∴∠AED=∠C(两直线平行,同位角相等)
3.解析:(1).∵点P在y轴上,∴a-1=0,∴a=1,∴点P坐标为(0,9)
(2).∵AB∥x轴∴m=4,n≠3
4.解析:

解析:(1).由图可知△ABC的底AB为6,高为C点的纵坐标等于5,
所以△ABC的面积=0.5×6×5=15
(2)△A1B1C1与△A2B2C2如下图所示,A2(2,3)、B2(8,3)、C2(7,8)

5.解析:(1).设这个多边形是n边形,则(n-2) 180°=4×360°,
∴n=10
(2).10 (10-3)÷2=35(条)
6.解析:设∠A=3x,∠B=4x,∠C=5x
∵∠A+∠B+∠C=180°(三角形三内角和等于180°)
∴3x+4x+5x=180°
∴x=15°
∴∠A=45°,∠B=60°,∠C=75°
∵四边形AEHD内角和等于360°
∴∠A+∠AEH+∠ADH+∠EHD=360°
∵CE⊥AB;BD⊥AC
∴∠AEH=90°,∠ADH=90°
∴45°+90°+90°+∠EHD=360°
∴∠EHD=135°
∵∠BHC=∠EHD=135°(对顶角相等)

回答3:

1.若m>-1,则下列各式中错误的是( )
A.6m>-6 B.-5m<-5 C.m+1>0 D.1-m<2
2.已知a>b>0,那么下列不等式组中无解的是( )
A. B. C. D.
3. 不等式14x-7(3x-8)<4(25+x)的负整数解是( )
A.a>0 B.a<0 C.a>-2009 D.a<-2009
4.一辆汽车在公路上行驶,两次拐弯后,仍在原来的方向上平行行驶,那么两个拐弯的角度可能为 ( )
(A) 先右转50°,后右转40° (B) 先右转50°,后左转40°
(C) 先右转50°,后左转130° (D) 先右转50°,后左转50°
5.解为 的方程组是( )
A. B. C. D.
6.如图,在△ABC中,∠ABC=500,∠ACB=800,BP平分∠ABC,CP平分∠ACB,则∠BPC的大小是( )
A.1000 B.1100 C.1150 D.1200

(1) (2) (3)
7.四条线段的长分别为3,4,5,7,则它们首尾相连可以组成不同的三角形的个数是( )
A.4 B.3 C.2 D.1
8.在各个内角都相等的多边形中,一个外角等于一个内角的 ,则这个多边形的边数是( )
A.5 B.6 C.7 D.8
9.如图,△A1B1C1是由△ABC沿BC方向平移了BC长度的一半得到的,若△ABC的面积为20 cm2,则四边形A1DCC1的面积为( )
A.10 cm2 B.12 cm2 C.15 cm2 D.17 cm2
10.课间操时,小华、小军、小刚的位置如图1,小华对小刚说,如果我的位置用(0,0)表示,小军的位置用(2,1)表示,那么你的位置可以表示成( )
A.(5,4) B.(4,5)¬ C.(3,4)¬ D.(4,3)

回答4:

读不懂?你打上这么几个字是想表达或说明什么问题呢?
你是卖这个试卷的?
你还是买这个试卷的?
还是你来这里打算让别人为你无偿的提供这个试卷的?
买或卖的话就直接挑明了,不用这样扭扭捏捏不好意思的;
如果打算是无偿的得到或占有这个试卷,起码也应该说明了对人家有一句礼貌的语言吧?
这么旁若无人般的对着电脑大要试卷是不是有些过份了?是不是有些太无礼无理了呢?

回答5:

已知a+b=m,ab=4,化简[a-2][b-2]=