1⼀1+2+1⼀1+2+3+1⼀1+2+3+4+…+1⼀1+2+3+…+2001的解

求具体过程
2025-01-03 02:44:55
推荐回答(1个)
回答1:

分母是1.2.3.....n的和,公式为n(n+1)/2
1/(1+2)+1/(1+2+3)+...............1/(1+2+3+...+2001)
= 2(1/2*3 +1/3*4+............1/2001*2002)
= 2(1/2 -1/3 +1/3 - 1/4+.........+1/2001 - 1/2002)
= 2 *(1/2 - 1/2002)
= 2*1000/2002
= 1000/1001