方差公式:
标准方差公式(1):
标准方差公式(2):
例如 两人的5次测验成绩如下:X: 50,100,100,60,50,平均值E(X)=72;Y:73, 70,75,72,70 平均值E(Y)=72。
平均成绩相同,但X 不稳定,对平均值的偏离大。方差描述随机变量对于数学期望的偏离程度。单个偏离是消除符号影响方差即偏离平方的均值,记为E(X):直接计算公式分离散型和连续型。
推导另一种计算公式得到:“方差等于各个数据与其算术平均数的离差平方和的平均数”。其中,分别为离散型和连续型计算公式。称为标准差或均方差,方差描述波动程度。
扩展资料:
性质:
1、设C为常数,则D(C) = 0(常数无波动);
2、D(CX )=C2D(X ) (常数平方提取,C为常数,X为随机变量);
证:特别地 D(-X ) = D(X ), D(-2X ) = 4D(X )(方差无负值)
3、若X 、Y 相互独立,则,证:记
前面两项恰为 D(X )和D(Y ),第三项展开后为
当X、Y 相互独立时,故第三项为零。特别地独立前提的逐项求和,可推广到有限项。
参考资料来源:百度百科-方差计算公式
方差计算公式
其中M为数据的平均数,n为数据的个数,s2为方差。
方差是各个数据与平均数之差的平方的平均数。
S^2=[(X1-X¯)^2+(X2-X¯)^2+……+(Xn-X¯)^2]/N
S^2=1/N*Σ(Xn-X¯)^2
举例:
1,2,3,4,5,6,7
平均值:4
方差:[(1-4)^2+(2-4)^2+(3-4)^2+(4-4)^2+(5-4)^2+(6-4)^2+(7-4)^2]/7=4
常数的方差计算公式是什么呢