由(a-b)^2+(b-c)^2+(a-c)^2 >= 0可以得到2=2a^2+2b^2+2c^2 >= 2ab+2ac+2bc 所以2ab+2ac+2bc <=2与a^2+b^2+c^2=1相加即得(a+b+c)^2<=3
柯西不等式:(a+b+c)^2<=(a^2+b^2+c^2)x(1+1+1)=3