转动惯量平行轴定理:平行轴定理能够很简易地,从刚体对于一支通过质心的直轴(质心轴)的转动惯量,计算出刚体对平行于质心轴的另外一支直轴的转动惯量。
其量值取决于物体的形状、质量分布及转轴的位置。刚体的转动惯量有着重要的物理意义,在科学实验、工程技术、航天、电力、机械、仪表等工业领域也是一个重要参量。电磁系仪表的指示系统,因线圈的转动惯量不同,可分别用于测量微小电流(检流计)或电量(冲击电流计)。在发动机叶片、飞轮、陀螺以及人造卫星的外形设计上,精确地测定转动惯量,都是十分必要的。
扩展资料:
垂直轴定理
垂直轴定理:一个平面刚体薄板对于垂直它的平面的轴的转动惯量,等于绕平面内与垂直轴相交的任意两正交轴的转动惯量之和。
实验测定
实际情况下,不规则刚体的转动惯量往往难以精确计算,需要通过实验测定。测定刚体转动惯量的方法很多,常用的有三线摆、扭摆、复摆等。三线摆是通过扭转运动测定物体的转动惯量,其特点是物理图像清楚、操作简便易行、适合各种形状的物体。
参考资料来源:百度百科-转动惯量
参考资料来源:百度百科-平行轴定理
平行轴定理能够很简易地,从刚体对于一支通过质心的直轴的转动惯量,计算出刚体对平行于质心轴的另外一支直轴的转动惯量。平行轴定理、垂直轴定理、伸展定则,这些工具都可以用来求得许多不同形状的物体的转动惯量。因雅各·史丹纳而命名,史丹纳定理所指的几个理论,其中一个理论就是平行轴定理。平行轴定理能够很简易的,从对于一个以质心为原点的坐标系统的惯性张量
若有任一轴与过质心的轴平行,且该轴与过质心的轴相距为d,刚体对其转动惯量为J',则有:J'=J+md^2
其中J表示相对通过质心的轴的转动惯量。这个定理称为平行轴定理。
举个例子,根据平行轴定理,细棒绕通过其一端而垂直于棒的轴的转动惯量为
J=JC+m(l/2)平方=(1/12)ml方+(1/4)ml方=(1/3)ml方
平行轴定理定义: 平行轴定理反映了刚体绕不同轴的转动惯量之间的关系。它给出了刚体对任意转轴的转动惯量和对与此轴平行且通过质心的转轴的转动惯量之间的关系。
若有任一轴与过质心的轴平行,且该轴与过质心的轴相距为d,刚体对其转动惯量为J',则有:
J'=J+md^2
其中J表示相对通过质心的轴的转动惯量。这个定理称为平行轴定理。
因雅各·史丹纳 (Jakob Steiner) 而命名,史丹纳定理所指的几个理论,其中一个理论就是平行轴定理。
实验方法及公式推导
一个围绕定轴摆动的刚体就是复摆,当摆动的振幅甚小时,其振动周期 T 为
式中J为复摆对以O 为轴转动时的转动惯量,m 为复摆的质量,g 为当地的重力加速度,h 为摆的支点O 到摆的质心 G 的距离. 又设复摆对通过质心 G 平行O 轴的轴转动时的转动惯量为 JG,根据平行轴定理得:
而JG又可写成 JG= m k 2,k 就是复摆的回转半径,由此可将⑴式改成为
整理⑶式得:
当 h= h1 时,I1= JG + mh12,式中h1为支点O1到摆的质心G的距离,J1是以O1为轴时的转动惯量.同理有:
⑷- ⑸得:
上式反映出转轴位置对转动的影响,也是对平行轴定理的检验.在⑹式中令 y= T2h- T12h1,x = h2-h12,则⑹式变为
从测量可得出 n 组(x,y) 值,用最小二乘法求出拟合直线y= a+ bx及相关系数r,若r接近于1,说明x与y二者线性相关,平行轴定理得到验证; 或作T2h- T12h1对h2-h12图线,若到检验为一直线,平行轴定理亦得.
若有任一轴与过质心的轴平行,且该轴与过质心的轴相距为d,刚体对其转动惯量为J',则有:J'=J+md^2 其中J表示相对通过质心的轴的转动惯量。这个定理称为平行轴定理。举个例子,根据平行轴定理,细棒绕通过其一端而垂直于棒的轴的转动惯量为 J=JC+m(l/2)平方=(1/12)ml方+(1/4)ml方=(1/3)ml方 平行轴定理定义: 平行轴定理反映了刚体绕不同轴的转动惯量之间的关系。它给出了刚体对任意转轴的转动惯量和对与此轴平行且通过质心的转轴的转动惯量之间的关系。