勾三股四弦五,什么意思,出于哪里呢?

勾三股四弦五,什么意思,出于哪里呢?
2024-10-31 03:23:04
推荐回答(3个)
回答1:

勾股定理:在任何一个直角三角形中,两条直角边的平方之和一定等于斜边的平方。

这个定理在中国又称为"商高定理",在外国称为"毕达哥拉斯定理"。为什么一个定理有这么多名称呢?

商高是公元前十一世纪的中国人。当时中国的朝代是西周,是奴隶社会时期。

在中国古代大约是战国时期西汉的数学著作《周髀算经》中记录着商高同周公的一段对话。商高说:"…故折矩,勾广三,股修四,经隅五。"

什么是"勾、股"呢?在中国古代,人们把弯曲成直角的手臂的上半部分称为"勾",下半部分称为"股"。

商高那段话的意思就是说:当直角三角形的两条直角边分别为3(短边)和4(长边)时,径隅(就是弦)则为5。以后人们就简单地把这个事实说成"勾三股四弦五"。

由于勾股定理的内容最早见于商高的话中,所以人们就把这个定理叫作"商高定理"。

毕达哥拉斯(Pythagoras)是古希腊数学家,他是公元前五世纪的人,比商高晚出生五百多年。

希腊另一位数学家欧几里德(Euclid,是公元前三百年左右的人)在编著《几何原本》时,认为这个定理是毕达哥达斯最早发现的,所以他就把这个定理称为"毕达哥拉斯定理",以后就流传开了。

关于勾股定理的发现,《周髀算经》上说:"故禹之所以治天下者,此数之所由生也。""此数"指的是"勾三股四弦五",这句话的意思就是说:勾三股四弦五这种关系是在大禹治水时发现的。

回答2:

这是我国著名的沟股定理:两直角边的平方和等于斜边的平方,最早出自(九章算术第八章;方程)

回答3:

商高定理
(根据这个定理,我们可以算,已知直角三角形的两个边,求出另一个边的长度)
商高是公元前十一世纪的中国人。当时中国的朝代是西周,是奴隶社会时期。在中国古代大约是战国时期西汉的数学著作 《周髀算经》中记录着商高同周公的一段对话。商高说:“…故折矩,勾广三,股修四,经隅五。”商高那段话的意思就是说:当直角三角形的两条直角边分别为3(短边)和4(长边)时,径隅(就是弦)则为5。以后人们就简单地把这个事实说成“勾三股四弦五”。这就是著名的勾股定理.