求由方程xy=e的(x+y)次方所确定的隐函数y=y(x)的导数dy⼀dx

2024-11-02 15:40:57
推荐回答(2个)
回答1:

xy=e^(x+y)
(y+xy')=e^(x+y)*(x+y)'
y+xy'=e^(x+y)(1+y')
y+xy'=e^(x+y)+e^(x+y)(1+y')
所以:
dy/dx=y'=[e^(x+y)-y]/[x-e^(x+y)].

回答2:

两边对x求导得y+xy'=(1+y')*e^(x+y)
∴y'=[y-e^(x+y)]/[e^(x+y) -x]