设fx在x=0处连续,且limf(x)⼀x存在,证明f(x)在x=0处可导

2024-12-04 23:39:06
推荐回答(1个)
回答1:

f(x)在x=0处连续,且lim(x→0)f(x)/x存在,假设价值为A
∵分母x→0
∴分子f(x)→0
(否则极限不存在)
∴lim(x→0)f(x)/x为0/0型
lim(x→0)f(x)/x=lim(x→0)f'(x)/x'=f'(0)=A
∴f(x)在x=0处可导