1、完全可以的,这是焊接工艺的选择问题。
2、铝及铝合金的焊接工艺
铝及铝合金的焊接特点
(1)铝在空气中及焊接时极易氧化,生成的氧化铝(Al2O3)熔点高、非常稳定,不易去除。阻碍母材的熔化和熔合,氧化膜的比重大,不易浮出表面,易生成夹渣、未熔合、未焊透等缺欠。铝材的表面氧化膜和吸附大量的水分,易使焊缝产生气孔。焊接前应采用化学或机械方法进行严格表面清理,清除其表面氧化膜。在焊接过程加强保护,防止其氧化。钨极氩弧焊时,选用交流电源,通过“阴极清理”作用,去除氧化膜。气焊时,采用去除氧化膜的焊剂。在厚板焊接时,可加大焊接热量,例如,氦弧热量大,利用氦气或氩氦混合气体保护,或者采用大规范的熔化极气体保护焊,在直流正接情况下,可不需要“阴极清理”。
(2)铝及铝合金的热导率和比热容均约为碳素钢和低合金钢的两倍多。铝的热导率则是奥氏体不锈钢的十几倍。在焊接过程中,大量的热量能被迅速传导到基体金属内部,因而焊接铝及铝合金时,能量除消耗于熔化金属熔池外,还要有更多的热量无谓消耗于金属其他部位,这种无用能量的消耗要比钢的焊接更为显著,为了获得高质量的焊接接头,应当尽量采用能量集中、功率大的能源,有时也可采用预热等工艺措施。
(3)铝及铝合金的线膨胀系数约为碳素钢和低合金钢的两倍。铝凝固时的体积收缩率较大,焊件的变形和应力较大,因此,需采取预防焊接变形的措施。铝焊接熔池凝固时容易产生缩孔、缩松、热裂纹及较高的内应力。生产中可采用调整焊丝成分与焊接工艺的措施防止热裂纹的产生。在耐蚀性允许的情况下,可采用铝硅合金焊丝焊接除铝镁合金之外的铝合金。在铝硅合金中含硅0.5%时热裂倾向较大,随着硅含量增加,合金结晶温度范围变小,流动性显著提高,收缩率下降,热裂倾向也相应减小。根据生产经验,当含硅5%~6%时可不产生热裂,因而采用SAlSi条(硅含量4.5%~6%)焊丝会有更好的抗裂性。
(4)铝对光、热的反射能力较强,固、液转态时,没有明显的色泽变化,焊接操作时判断难。高温铝强度很低,支撑熔池困难,容易焊穿。
(5)铝及铝合金在液态能溶解大量的氢,固态几乎不溶解氢。在焊接熔池凝固和快速冷却的过程中,氢来不及溢出,极易形成氢气孔。弧柱气氛中的水分、焊接材料及母材表面氧化膜吸附的水分,都是焊缝中氢气的重要来源。因此,对氢的来源要严格控制,以防止气孔的形成。
(6)合金元素易蒸发、烧损,使焊缝性能下降。
(7)母材基体金属如为变形强化或固溶时效强化时,焊接热会使热影响区的强度下降。
(8) 铝为面心立方晶格,没有同素异构体,加热与冷却过程中没有相变,焊缝晶粒易粗大,不能通过相变来细化晶粒。
2. 焊接方法
几乎各种焊接方法都可以用于焊接铝及铝合金,但是铝及铝合金对各种焊接方法的适应性不同,各种焊接方法有其各自的应用场合。气焊和焊条电弧焊方法,设备简单、操作方便。气焊可用于对焊接质量要求不高的铝薄板及铸件的补焊。焊条电弧焊可用于铝合金铸件的补焊。惰性气体保护焊(TIG或MIG)方法是应用最广泛的铝及铝合金焊接方法。铝及铝合金薄板可采用钨极交流氩弧焊或钨极脉冲氩弧焊。铝及铝合金厚板可采用钨极氦弧焊、氩氦混合钨极气体保护焊、熔化极气体保护焊、脉冲熔化极气体保护焊。熔化极气体保护焊、脉冲熔化极气体保护焊应用越来越广泛(氩气或氩/氦混合气)
3.焊接材料
(1)焊丝
铝及铝合金焊丝的选用除考虑良好的焊接工艺性能外,按容器要求应使对接接头的抗拉强度、塑性(通过弯曲试验)达到规定要求,对含镁量超过3%的铝镁合金应满足冲击韧性的要求,对有耐蚀要求的容器,焊接接头的耐蚀性还应达到或接近母材的水平。因而焊丝的选用主要按照下列原则:
1)纯铝焊丝的纯度一般不低于母材;
2)铝合金焊丝的化学成分一般与母材相应或相近;
3)铝合金焊丝中的耐蚀元素(镁、锰、硅等)的含量一般不低于母材;
4)异种铝材焊接时应按耐蚀较高、强度高的母材选择焊丝;
5)不要求耐蚀性的高强度铝合金(热处理强化铝合金)可采用异种成分的焊丝,如抗裂性好的铝硅合金焊丝SAlSi一1等(注意强度可能低于母材)。
(2)保护气体
保护气体为氩气、氦气或其混合气。交流加高频TIG焊时,采用大于99.9%纯氩气,直流正极性焊接宜用氦气。MIG焊时,板厚<25 mm时宜用氩气;板厚25 mm~50 mm时氩气中宜添加10%~35%的氦气;板厚50mm-75mm时氩气中宜添加l0%~35%或50%的氦气;当板厚>75 mm时推荐采用添加50%~75%氦气的氩气。氩气应符合GB/T 4842?995《纯氩》的要求。氩气瓶压低于0.5 MPa后压力不足,不能使用。
(3)钨极
氩弧焊用的钨极材料有纯钨、钍钨、铈钨、锆钨四种。纯钨极的熔点和沸点高,不易熔化挥发,电极烧损及尖端的污染较少,但电子发射能力较差。在纯钨中加入1%~2%氧化钍的电极为钍钨极,电子发射能力强,允许的电流密度高,电弧燃烧较稳定,但钍元素具有一定的放射性,使用时应采取适当的防护措施。在纯钨中加入1.8%~2.2%的氧化铈(杂质≤0.1%)的电极为铈钨极。铈钨极电子逸出功低,化学稳定性高,允许电流密度大,无放射性,是目前普遍采用的电极。锆钨极可防止电极污染基体金属,尖端易保持半球形,适用于交流焊接。
(4)焊剂 气焊用焊剂为钾、钠、锂、钙等元素的氯化物和氟化物,可去除氧化膜。
4. 焊前准备
(1)焊前清理
铝及铝合金焊接时,焊前应严格清除工件焊口及焊丝表面的氧化膜和油污,清除质量直接影响焊接工艺与接头质量,如焊缝气孔产生的倾向和力学性能等。常采用化学清洗和机械清理两种方法。
1)化学清洗
化学清洗效率高,质量稳定,适用于清理焊丝及尺寸不大、成批生产的工件。可用浸洗法和擦洗法两种。可用丙酮、汽油、煤油等有机溶剂表面去油,用40℃~70℃的5%~10%NaOH溶液碱洗3 min~7 min(纯铝时间稍长但不超过20 min),流动清水冲洗,接着用室温至60℃的30%HNO3溶液酸洗1 min~3 min,流动清水冲洗,风干或低温干燥。
2)机械清理
在工件尺寸较大、生产周期较长、多层焊或化学清洗后又沾污时,常采用机械清理。先用丙酮、汽油等有机溶剂擦试表面以除油,随后直接用直径为0.15mm~0.2mm的铜丝刷或不锈钢丝刷子刷,刷到露出金属光泽为止。一般不宜用砂轮或普通砂纸打磨,以免砂粒留在金属表面,焊接时进入熔池产生夹渣等缺陷。另外也可用刮刀、锉刀等清理待焊表面。
工件和焊丝经过清洗和清理后,在存放过程中会重新产生氧化膜,特别是在潮湿环境下,在被酸、碱等蒸气污染的环境中,氧化膜成长得更快。因此,工件和焊丝清洗和清理后到焊接前的存放时间应尽量缩短,在气候潮湿的情况下,一般应在清理后4 h内施焊。清理后如存放时间过长(如超过24 h)应当重新处理。
(2)垫板
铝及铝合金在高温时强度很低,液态铝的流动性能好,在焊接时焊缝金属容易产生下塌现象。为了保证焊透而又不致塌陷,焊接时常采用垫板来托住熔池及附近金属。垫板可采用石墨板、不锈钢板、碳素钢板、铜板或铜棒等。垫板表面开一个圆弧形槽,以保证焊缝反面成型。也可以不加垫板单面焊双面成型,但要求焊接操作熟练或采取对电弧施焊能量严格自动反馈控制等先进工艺措施。
(3)焊前预热 薄、小铝件一般不用预热,厚度10 mm~15 mm时可进行焊前预热,根据不同类型的铝合金预热温度可为100℃~200℃,可用氧一乙炔焰、电炉或喷灯等加热。预热可使焊件减小变形、减少气孔等缺陷。
5.焊后处理
(1)焊后清理
焊后留在焊缝及附近的残存焊剂和焊渣等会破坏铝表面的钝化膜,有时还会腐蚀铝件,应清理干净。形状简单、要求一般的工件可以用热水冲刷或蒸气吹刷等简单方法清理。要求高而形状复杂的铝件,在热水中用硬毛刷刷洗后,再在60℃~80℃左右、浓度为2%~3%的铬酐水溶液或重铬酸钾溶液中浸洗5 min~10 min,并用硬毛刷洗刷,然后在热水中冲刷洗涤,用烘箱烘干,或用热空气吹干,也可自然干燥。
(2)焊后热处理
铝容器一般焊后不要求热处理。如果所用铝材在容器接触的介质条件下确有明显的应力腐蚀敏感性,需要通过焊后热处理以消除较高的焊接应力,来使容器上的应力降低到产生应力腐蚀开裂的临界应力以下,这时应由容器设计文件提出特别要求,才进行焊后消除应力热处理。如需焊后退火热处理,对于纯铝、5052、5086、5154、5454、5A02、5A03、5A06等,推荐温度为345℃;对于2014、2024、3003、3004、5056、5083、5456、6061、6063、2A12、2A24、3A21等,推荐温度为415℃;对于2017、2A11、6A02等,推荐温度为360℃,根据工件大小与要求,退火温度可正向或负向各调20℃~30℃,保温时间可在0.5 h~2 h之间。
可以焊接,焊接方法:
1、钨极氩弧焊
钨极氩弧焊法主要用于铝合金,是一种较好的焊接方法,不过钨极氩弧焊设备较复杂,不合适在露天条件下操作。
2、电阻点焊、缝焊
这种焊接方法可以用来焊接厚度在5mm以下的铝合金薄板。但是在焊接时用的设备比较复杂,焊接电流大、生产率较高,特别适用于大批量生产的零、部件。
3、脉冲氩弧焊
脉冲氩弧焊可以很好的改善在焊接过程中的稳定性可以调节参数来控制电弧功率和焊缝成形。焊件变形小、热影响区小,特别适用于薄板、全位置焊接等场合以及对热敏感性强的锻铝、硬铝、超硬铝等的焊接。
4、搅拌摩擦焊
搅拌摩擦焊首先并主要在铝合金、镁合金等轻金属结构领域得到越来越广泛的应用,此方法的最大特点就是焊接温度低于材料熔点,可避免由熔焊所带来的裂纹、气孔等缺陷。
金属铝确实比较难焊接,不过看你用在什么地方。我们都是菜用高频钎焊机来焊接的,受热均匀,安全稳定。
可以,目前有中频点焊,激光焊和冷焊等工艺。
可以焊,我推荐使用激光焊,不需要熔丝,也不需要焊接师傅,可以省下很多人工费,并且效率也会增加很多