1、如图,阴影部分面积即为所求面积。这种形状用y作为积分变量比较方便一点
将两条曲线分别转变为y的函数,可得x=-y+1,x=e^y,积分变量为y从0→1
S阴影=∫(0→1)(x2-x1)dy
=∫(0→1)[e^y-(-y+1)]dy
=∫(0→1)e^ydy+∫(0→1)(y-1)dy
=(e-1)+(0+1)
=e
2、用分步积分法:
∫(0→1)xarctanxdx
=1/2∫(0→1)arctanxdx^2
=1/2[(0→1)x^2arctanx-∫(0→1)x^2d(arctanx)]
=1/2[π/4-∫(0→1)x^2/(1+x^2)dx]
=1/2[π/4-∫(0→1)dx+∫(0→1)1/(1+x^2)dx]
=1/2[π/4-1+(0→1)arctanx]
=1/2[π/4-1+π/4]
=π/4-1/2
3、分步积分法:
∫(1→π)xlnxdx
=1/2∫(1→π)lnxd(x^2)
=1/2[(1→π)x^2lnx-∫(1→π)x^2dlnx]
=1/2[(1→π)x^2lnx-∫(1→π)xdx]
=1/2[(1→π)x^2lnx-(1→π)x^2/2]
=1/2[(π^2lnπ-0)-(π^2-1)/2]
=1/2π^2(lnπ-1)+1/4