求解两道高中数学题,高分…

2024-11-15 09:52:22
推荐回答(2个)
回答1:

f(x)=√2[(√2/2)sinx+(√2/2)cosx]=√2[sinxcos(π/4)+cosxsin(π/4)]=√2sin(x+π/4)
1、最大值是√2,此时x+π/4=2kπ+π/2,即取得最大值是取值集合是:{x|x=2kπ+π/4,k∈Z}
2、这个函数可以由y=sinx ====>>>>> 向左平移π/4个单位【得到y=sin(x+π/4)】,再将所得到的函数图像上所有点的横坐标不变,纵坐标增加到原来的√2倍,得:y=√2sin(x+π/4),即:y=sinx+cosx

a(n+1)-a(n)=2=常数,则数列{a(n)}是以d=2为公差的等差数列,因a2=a1+d,则:a1=10
an=a1+(n-1)d=2n+8
则:
S5=10+12+14+16+18=70;
Sn=[n(a1+an)]/2=n²+8n

回答2:

最大值为2最小值为0