对称的方法
利用∫[0,a]f(x)dx=(1/2){∫[0,a]f(x)dx+∫[0,a]f(a-x)dx}
上述公式你用换元法就可以证明了,在这里就不证了。
积分的一个严格的数学定义由波恩哈德·黎曼给出(参见条目“黎曼积分”)。黎曼的定义运用了极限的概念,把曲边梯形设想为一系列矩形组合的极限。
比如说,路径积分是多元函数的积分,积分的区间不再是一条线段(区间[a,b]),而是一条平面上或空间中的曲线段;在面积积分中,曲线被三维空间中的一个曲面代替。对微分形式的积分是微分几何中的基本概念。
除了黎曼积分和勒贝格积分以外,还有若干不同的积分定义,适用于不同种类的函数。
达布积分:等价于黎曼积分的一种定义,比黎曼积分更加简单,可用来帮助定义黎曼积分。
性质
通常意义
积分都满足一些基本的性质。以下的 在黎曼积分意义上表示一个区间,在勒贝格积分意义下表示一个可测集合。
线性
积分是线性的。如果一个函数f可积,那么它乘以一个常数后仍然可积。如果函数f和g可积,那么它们的和与差也可积。