y=ln(x+√1+X^2)的导数 求详细过程

2024-11-01 09:08:38
推荐回答(4个)
回答1:

具体回答如下:

y'=[ln(x+√(1+x²))]'

=1/(x+√(1+x²))  [x+√(1+x²)]'

=1/(x+√(1+x²))  [1+2x/2√(1+x²)]

=1/(x+√(1+x²))  [1+x/√(1+x²)]

=1/(x+√(1+x²)) [1√(1+x²)+x]/√(1+x²)

=1/√(1+x²)

导数的意义:

计算已知函数的导函数可以按照导数的定义运用变化比值的极限来计算。在实际计算中,大部分常见的解析函数都可以看作是一些简单的函数的和、差、积、商或相互复合的结果。

只要知道了这些简单函数的导函数,那么根据导数的求导法则,就可以推算出较为复杂的函数的导函数。

回答2:

y'=[ln(x+√(1+x²))]'

=1/(x+√(1+x²)) * [x+√(1+x²)]'

=1/(x+√(1+x²)) * [1+2x/2√(1+x²)]

=1/(x+√(1+x²)) * [1+x/√(1+x²)]

=1/(x+√(1+x²)) * [1√(1+x²)+x]/√(1+x²)

=1/√(1+x²)

可导,即设y=f(x)是一个单变量函数, 如果y在x=x0处左右导数分别存在且相等,则称y在x=x[0]处可导。如果一个函数在x0处可导,那么它一定在x0处是连续函数。


函数可导的条件:


如果一个函数的定义域为全体实数,即函数在其上都有定义。函数在定义域中一点可导需要一定的条件:函数在该点的左右导数存在且相等,不能证明这点导数存在。只有左右导数存在且相等,并且在该点连续,才能证明该点可导。


可导的函数一定连续;连续的函数不一定可导,不连续的函数一定不可导。

回答3:

y'=[ln(x+√(1+x²))]'
=1/(x+√(1+x²)) * [x+√(1+x²)]'
=1/(x+√(1+x²)) * [1+2x/2√(1+x²)]
=1/(x+√(1+x²)) * [1+x/√(1+x²)]
=1/(x+√(1+x²)) * [1√(1+x²)+x]/√(1+x²)
=1/√(1+x²)

希望可以帮到你,不明白可以追问,如果解决了问题,请点下面的"选为满意回答"按钮,谢谢。

回答4:

y'=1/[x+√(1+x^2)]*[(x+√(1+x^2)]'
=1/[x+√(1+x^2)]*{1+1/2*[1/√(1+x^2)]*2x}
=1/[x+√(1+x^2)]*[1+x/√(1+x^2)]
=1/[x+√(1+x^2)]*{[√(1+x^2)+x]/√(1+x^2)}
=1/√(1+x^2)