设数列{an}、{bn}的公差、公比分别为d、q,由 c2=6 c3=11 得 (1+d)+q=6 (1+2d)+q2=11 ,消去d得q2-2q=0,∵q≠0,∴q=2,∴d=3,∴an=3n-2,bn=2n-1∴Sn=(a1+a2+…+an)+(b1+b2+…+bn)= n(a1+an) 2 + b1(1?qn) 1?q = n(3n?1) 2 +2n-1.