arctanx和arccotx是什么关系,为什么它们的倒数互为相反数

2024-11-18 12:16:14
推荐回答(5个)
回答1:

因为-arctanx+ π/2(常数C) =arccot x

所以他们的导数-1/1+x^2的积分写 -arctanx+C还是arccot x+C都是一样的,C是任意常数,所以两者一样。

扩展资料

在推导的过程中有这几个常见的公式需要用到:

⒈(链式法则)y=f[g(x)],y'=f'[g(x)]·g'(x)『f'[g(x)]中g(x)看作整个变量,而g'(x)中把x看作变量』

2. y=u*v,y'=u'v+uv'(一般的leibniz公式)

3.y=u/v,y'=(u'v-uv')/v^2,事实上4.可由3.直接推得

4.(反函数求导法则)y=f(x)的反函数是x=g(y),则有y'=1/x'

正切函数y=tanx在开区间(x∈(-π/2,π/2))的反函数,记作y=arctanx 或 y=tan-1x,叫做反正切函数。它表示(-π/2,π/2)上正切值等于 x 的那个唯一确定的角,即tan(arctan x)=x,反正切函数的定义域为R即(-∞,+∞)。反正切函数是反三角函数的一种。

由于正切函数y=tanx在定义域R上不具有一一对应的关系,所以不存在反函数。注意这里选取是正切函数的一个单调区间。而由于正切函数在开区间(-π/2,π/2)中是单调连续的,因此,反正切函数是存在且唯一确定的。

引进多值函数概念后,就可以在正切函数的整个定义域(x∈R,且x≠kπ+π/2,k∈Z)上来考虑它的反函数,这时的反正切函数是多值的,记为 y=Arctan x,定义域是(-∞,+∞),值域是 y∈R,y≠kπ+π/2,k∈Z。

于是,把 y=arctan x (x∈(-∞,+∞),y∈(-π/2,π/2))称为反正切函数的主值,而把 y=Arctan x=kπ+arctan x (x∈R,y∈R,y≠kπ+π/2,k∈Z)称为反正切函数的通值。反正切函数在(-∞,+∞)上的图像可由区间(-π/2,π/2)上的正切曲线作关于直线 y=x 的对称变换而得到。

反正切函数的大致图像如图所示,显然与函数y=tanx,(x∈R)关于直线y=x对称,且渐近线为y=π/2和y=-π/2。

回答2:

因为-arctanx+ π/2(常数C) =arccot x
所以他们的导数-1/1+x^2的积分写 -arctanx+C还是arccot x+C都是一样的,C是任意常数,所以两者一样。

回答3:


供参考。

回答4:

两个常数C相差一个常数π/2

回答5:

所以他们的导数-1/1+x^2的积分写 -arctanx+C还是arccot x+C都是一样的,C是任意常数,所以两者一样。

扩展资料

在推导的过程中有这几个常见的公式需要用到:

⒈(链式法则)y=f[g(x)],y'=f'[g(x)]·g'(x)『f'[g(x)]中g(x)看作整个变量,而g'(x)中把x看作变量』

2. y=u*v,y'=u'v+uv'(一般的leibniz公式)