证明:
必要性:因为f(x)当x→Xo时极限存在,设为A,则f(x)-A的绝对值 证明充分性时,是由左右极限的定义出发,证明出符合极限的定义。而函数的极限定义是对任一ε而言的,ε虽然可任意取得,但一经指定,它就是固定的。 证明的过程运用左右极限的定义时,若不选取同一ε,而选不同的ε1、ε2,就不符合极限定义,即不能得出对开始任意指定的ε,有|f(x)–A|<ε的结论。 N的相应性 一般来说,N随ε的变小而变大,因此常把N写作N(ε),以强调N对ε的变化而变化的依赖性。但这并不意味着N是由ε唯一确定的:(比如若n>N使|xn-a|<ε成立,那么显然n>N+1、n>2N等也使|xn-a|<ε成立)。重要的是N的存在性,而不在于其值的大小。
asdfasdfasdf
充分性:(已知左右极限存在且相等,证明极限存在)
设lim[x→x0+] f(x)=A,lim[x→x0-] f(x)=A
由lim[x→x0+] f(x)=A,则对于任意ε>0,存在δ1>0,当0
若x>x0,则0<|x-x0|<δ≤δ1成立,
若x
必要性:(已知极限存在,证明左右极限存在并相等)
由lim[x→x0] f(x)=A,则任取ε>0,存在δ>0,当0<|x-x0|<δ时,有|f(x)-A|<ε成立
此时有:0
希望可以帮到你,不明白可以追问,如果解决了问题,请点下面的"选为满意回答"按钮。