区别:
以二元函数z=f(x,y)为例,考虑一点(x,y),当该点受到扰动后,我们实际要处理的点是(x+Δx,y+Δy)处的信息, 那么然后前后函数值的变化Δz=f(x+Δx,y+Δy)-f(x,y)就是全增量.这是一个直接的概念.
而所谓的全微分,则是对全增量一个较好的近似,按照处理问题的习惯,全微分是全增量的线性主要部分,也就意味着全微分是dz=AΔx+BΔy的形式,同时,作为主要部分,dz-Δz必须是(Δx^2+Δy^2)^(1/2)高阶无穷小. (你无法用Δx或者Δy来衡量,因此选择上述形式).
拓展资料:
全微分是先对X求导,所得乘d(X),在对Y求导,所得乘d(Y),再把两个先加就是全微分
全增量是这点的X增加△X,Y增加△Y.△Z=f(X1+△X,Y1+△Y)-f(X1,Y1).且对△Z取极限等于0.那么△Z就是函数Z=f(X,Y)在点(X1,Y1)处的全增量.也就是X,Y同时获得增量.
全微分就是全增量的增量趋近0时的极限。
2.以二元函数z=f(x,y)为例,考虑一点(x,y),当该点受到扰动后,我们实际要处理的点是(x+Δx,y+Δy)处的信息, 那么然后前后函数值的变化Δz=f(x+Δx,y+Δy)-f(x,y)就是全增量.
3.全微分,是对全增量一个较好的近似,按照处理问题的习惯,全微分是全增量的线性主要部分,也就意味着全微分是dz=AΔx+BΔy的形式,同时,作为主要部分,dz-Δz必须是(Δx^2+Δy^2)^(1/2)高阶无穷小. (你无法用Δx或者Δy来衡量,因此选择上述形式).
微分在数学中的定义:由函数B=f(A),得到A、B两个数集,在A中当dx靠近自己时,函数在dx处的极限叫作函数在dx处的微分,微分的中心思想是无穷分割。微分是函数改变量的线性主要部分。微积分的基本概念之一。
设函数y = f(x)在x的邻域内有定义,x及x + Δx在此区间内。如果函数的增量Δy = f(x + Δx) - f(x)可表示为 Δy = AΔx + o(Δx)(其中A是不依赖于Δx的常数),而o(Δx)是比Δx高阶的无穷小(注:o读作奥密克戎,希腊字母)那么称函数f(x)在点x是可微的,且AΔx称作函数在点x相应于因变量增量Δy的微分,记作dy,即dy = AΔx。函数的微分是函数增量的主要部分,且是Δx的线性函数,故说函数的微分是函数增量的线性主部(△x→0)。
定理1
如果函数z=f(x,y)在点p0(x0,y0)处可微,则z=f(x,y)在p0(x0,y0)处连续,且各个偏导数存在,并且有f′x(x0,y0)=A,f′y(x0,y0)=B。
定理2
若函数z=f(x,y)在点p0(x0,y0)处的偏导数f′x,f′y连续,则函数f在点p0处可微。
定理3
若函数z = f (x, y)在点(x, y)可微分,则该函数在点(x,y)的偏导数 必存在,且函数z = f (x, y)在点(x,y)的全微分为:
一、全微分的定义
我们知道,一元函数 在某点 有改变量 时,相应的函数改变量 可以表示成两部分的和,即
其中微分 是 的线性主要部分, 是当 时比 高阶的无穷小.
对于多元函数也有类似的定义,下面先介绍几个概念.
1、几个概念
设二元函数 在点 的某邻域内有定义,当变量 , 分别有增量 , 时,由一元函数微分学中函数增量与微分的关系得
其中, , 分别称为二元函数对 和对 的偏增量, , 分别称为二元函数对 和对 的偏微分.
而把 称为函数 在点 的全增量.
2、全微分的定义
定义1 如果二元函数 在点 的全增量
可以表示为 ,
其中 , 与 , 无关,只与 , 有关, , 是当 时比 的高阶无穷小.则称二元函数 在点 可微,并把 叫做函数 在点 的全微分,记作
.
如果函数在某区域内各点处处可微,则称函数在区域内可微.
我们知道,对一元函数来说,可微一定连续,其实,这个结论对二元函数来说一样成立
二、可微的条件
定理1(可微的必要条件) 如果函数 在点 可微分,则函数在该点的偏导数 、 必存在,且函数 在点 的全微分为
.
证明:因为函数 在点 可微,即
,
其中 与 无关,而仅与 有关, .
特别地, 即
所以
即
同理令 ,得 .
所以 .
注意,一元函数 在点 可微和在点 可导是等价的,但在多元函数中这结论就不一定成立了,即偏导存在是可微的必要而不充分条件.
例如函数
在原点 的两个偏导都存在,即
,
同理可得
但是
,
而
现考查 是否为零.
特别地取 ,有
即 不是 的高阶无穷小(当 时),所以由全微分的定义,该函数在原点不可微.
那么在什么条件下可保证函数 在点 可微呢?
我们给出如下定理
定理2(可微的充分条件)如果函数 在点 的两个偏导数 、 存在而且连续,则函数在该点可微分.
证明:设点 是点 的某邻域内的任意一点, , 足够小.
则全增量
在 连续,就意味着偏导数在该点的某邻域内一定存在,在第一个方括号内,由于 不变,把 看作 的一元函数,则这个关于 的一元函数在 的某邻域内关于 的导数存在,由拉格朗日中值定理,
存在 ,使得
其中 介于 与 之间.
同理 存在 ,使得 ,
其中 介于 与 之间.
又由假设, , 在 连续,
所以 ,即有
其中
同理, ,即有
其中
所以
而 (当 时)
于是
即函数在 可微.
注意:偏导数连续是函数可微的充分而不必要的条件,例如
在原点 可微,但 点却是 , 的间断点.验证略.
通常,我们用 , 来表示 , ,则全微分可以写成
即全微分等于它的两个偏微分之和,我们称二元函数的全微分符合叠加原理.
叠加原理可以推广到三元及其以上的函数.如三元函数 的全微分为
二元函数的连续性、偏导数、全微分之间的关系可以用图7-8表示
例1求 在点 处的全微分.
解:因为 , ,
所以 , ,
即得 .
例2求 的全微分.
解:因为 , ,
所以 .
例3设 ,求 .
解:因为 , ,
,
所以 .
三、全微分在近似计算中的应用
设函数 在点 可微,则全增量
因此当 , 很小时, ,即 ,我们有如下近似公式
,
或 .
例4一圆柱形的铁罐,内半径为 ,内高为 ,壁厚均为 ,估计制作这个铁罐所需材料的体积大约为多少(包括上、下底)?
解:圆柱体的体积 ,按照题意,该铁罐的体积为
此处 , 都比较小,所以可用全微分近似代替全增量,即
即有 .
故所需材料的体积大约为 .
这两个概念有联系也有区别.
以二元函数z=f(x,y)为例,考虑一点(x,y),当该点受到扰动后,我们实际要处理的点是(x+Δx,y+Δy)处的信息, 那么然后前后函数值的变化Δz=f(x+Δx,y+Δy)-f(x,y)就是全增量.这是一个直接的概念.而所谓的全微分,则是对全增量一个较好的近似,按照处理问题的习惯,全微分是全增量的线性主要部分,也就意味着全微分是dz=AΔx+BΔy的形式,同时,作为主要部分,dz-Δz必须是(Δx^2+Δy^2)^(1/2)高阶无穷小. (你无法用Δx或者Δy来衡量,因此选择上述形式).
这两个概念有联系也有区别.
区分:
以二元函数z=f(x,y)为例,考虑一点(x,y),当该点受到扰动后,我们实际要处理的点是(x+Δx,y+Δy)处的信息, 那么然后前后函数值的变化Δz=f(x+Δx,y+Δy)-f(x,y)就是全增量.这是一个直接的概念.而所谓的全微分,则是对全增量一个较好的近似,按照处理问题的习惯,全微分是全增量的线性主要部分,也就意味着全微分是dz=AΔx+BΔy的形式,同时,作为主要部分,dz-Δz必须是(Δx^2+Δy^2)^(1/2)高阶无穷小. (你无法用Δx或者Δy来衡量,因此选择上述形式).
拓展资料:
全微分方程,又称恰当方程。若存在一个二元函数u(x,y)使得方程M(x,y)dx+N(x,y)dy=0的左端为全微分,即M(x,y)dx+N(x,y)dy=du(x,y),则称其为全微分方程。全微分方程的充分必要条件为∂M/∂y=∂N/∂x。为了求出全微分方程的原函数,可以采用不定积分法和分组法,对于不是全微分方程,也可以借助积分因子使其成为全微分方程,再通过以上方法求解。
微分在数学中的定义:由函数B=f(A),得到A、B两个数集,在A中当dx靠近自己时,函数在dx处的极限叫作函数在dx处的微分,微分的中心思想是无穷分割。微分是函数改变量的线性主要部分。微积分的基本概念之一。
如果函数z=f(x, y) 在(x, y)处的全增量
Δz=f(x+Δx,y+Δy)-f(x,y)
可以表示为Δz=AΔx+BΔy+o(ρ),
其中A、B不依赖于Δx, Δy,仅与x,y有关,ρ趋近于0(ρ=√[(Δx)2+(Δy)2]),此时称函数z=f(x, y)在点(x,y)处可微分,AΔx+BΔy称为函数z=f(x, y)在点(x, y)处的全微分,记为dz即
dz=AΔx +BΔy
该表达式称为函数z=f(x, y) 在(x, y)处(关于Δx, Δy)的全微分。
微分方程指含有未知函数及其导数的关系式。解微分方程就是找出未知函数。
微分方程是伴随着微积分学一起发展起来的。微积分学的奠基人Newton和Leibniz的著作中都处理过与微分方程有关的问题。微分方程的应用十分广泛,可以解决许多与导数有关的问题。物理中许多涉及变力的运动学、动力学问题,如空气的阻力为速度函数的落体运动等问题,很多可以用微分方程求解。此外,微分方程在化学、工程学、经济学和人口统计等领域都有应用。
数学领域对微分方程的研究着重在几个不同的面向,但大多数都是关心微分方程的解。只有少数简单的微分方程可以求得解析解。不过即使没有找到其解析解,仍然可以确认其解的部分性质。在无法求得解析解时,可以利用数值分析的方式,利用电脑来找到其数值解。 动力系统理论强调对于微分方程系统的量化分析,而许多数值方法可以计算微分方程的数值解,且有一定的准确度。
全增量:
设函数z=f(x,y)z=f(x,y)在点 P(x,y)P(x,y)的某邻域内有定义,则有P2(x+Δx,y+Δy)P2(x+Δx,y+Δy)为邻域内一点,P与P2P与P2的函数值之差称为函数在点 PP 对应于自变量增量 Δx、ΔyΔx、Δy 的全增量,记做 ΔzΔz:
Δz=f(x+Δx,y+Δy)−f(x,y)Δz=f(x+Δx,y+Δy)−f(x,y)
全微分:
充分条件:
如果函数z=f(x,y)z=f(x,y)的偏导数∂z∂x、∂z∂y∂z∂x、∂z∂y在点(x,y)(x,y)连续,那么该函数在该点可微分。
**(连续:多元函数的偏导数在一点连续是指:偏导数在该点的某个邻域内存在,于是偏导数在这个邻域内有定义,且这个函数求偏导后是连续的,则称函数在某点连续)
必要条件:
如果函数z=f(x,y)z=f(x,y)在点x,yx,y可微分,那么该函数在点(x,y)(x,y)的偏导数∂z∂x与∂z∂y∂z∂x与∂z∂y必定存在,且函数z=f(x,y)z=f(x,y)在点(x,y)(x,y)的全微分等于它的所有偏微分之和:
dz=∂z∂xΔx+∂z∂yΔy=∂z∂xdx+∂z∂ydy
全微分
如果函数z=f(x, y) 在(x, y)处的 全增量 Δz=f(x+Δx,y+Δy)-f(x,y) 可以表示为 Δz=AΔx+BΔy+o(ρ), 其中A、B不依赖于Δx, Δy,仅与x,y有关,ρ趋近于0(ρ=√[(Δx)2+(Δy)2]),此时称函数z=f(x, y)在点(x,y)处 可微分,AΔx+BΔy称为函数z=f(x, y)在点(x, y)处的 全微分,记为dz即 dz=AΔx +BΔy 该表达式称为函数z=f(x, y) 在(x, y)处(关于Δx, Δy)的全微分。
定义
函数z=f(x, y) 的两个偏导数f'x(x, y), f'y(x, y)分别与自变量的增量Δx, Δy乘积之和
f x(x,y)Δx+f y(x,y)Δy或f'x(x, y)Δx + f'y(x, y)Δy
若该表达式与函数的全增量Δz之差,
是当ρ→0时的高阶无穷小(那么该表达式称为函数z=f(x, y) 在(x, y)处(关于Δx, Δy)的全微分。
定理1如果函数z=f(x,y)在点p0(x0,y0)处可微,则z=f(x,y)在p0(x0,y0)处连续,且各个偏导数存在,并且有
f′x(x0,y0)=A,f′y(x0,y0)=B。
定理2若函数z=f(x,y)在点p0(x0,y0)处的偏导数f′x,f′y连续,则函数f在点p0处可微。
基本内容
设函数z=f(x,y)在点P(x,y)的某邻域内有定义,P‘(x+△x,y+△y)为这邻域内的任意一点,则称这两点的函数值之差
f(x+△x,y+△y)- f(x,y)为函数在点P对应自变量△x,△y的全增量,记作△z。