就是移项,合并同类项
由acosB-bcosA=(3/5)c及正弦定理得:sinAcosB-sinBcosA=(3/5)sinC=(3/5)sin(A+B)即5sinAcosB-5sinBcosA=3(sinAcosB+cosAsinB)移项得:5sinAcosB-3sinAcosB=3cosAsinB+5sinBcosA合并同类项得:2sinAcosB=8sinBcosA∴ sinAcosB/sinBcosA=tanA/tanB=8/2=4.