推荐答案这一步不正确:
=(1/2)ln|(√(t^2+1)-1)/(√(t^2+1)+1)|+C
=lnt-ln(√(t^2+1)+C
应为:
=(1/2)ln|(√(t^2+1)-1)/(√(t^2+1)+1)|+C
=lnt-ln(√(t^2+1)+1)+C
=(1/2)∫((t+1)/t√(t^2+1))dt (t=x^2)
=(1/2)∫(1/√(t^2+1))dt+(1/2)∫1/t√(t^2+1))dt
=(1/2)ln|t+√(t^2+1)+(1/2)∫1/t√(t^2+1))dt
对后面的积分,√(t^2+1)=u, tdt=udu ,代入得:
∫1/t√(t^2+1))dt= ∫[1/(u^2-1)]du
=(1/2)ln|(u-1)/(u+1)|+C
=(1/2)ln|(√(t^2+1)-1)/(√(t^2+1)+1)|+C
=(1/2)ln|(√(t^2+1)-1)/(√(t^2+1)+1)|+C
=lnt-ln(√(t^2+1)+C
原积分=(1/2)(ln(x^2+√(x^4+1)+lnx^2-ln(√(x^4+1))+C
=1/2*asinh(x^2)-1/2*atanh(1/(x^4+1)^(1/2))+常数