f(x,y)=arctan(y/x)那么对x 求偏导数得到f 'x= 1/ [(y/x)^2+1] *(y/x)'=1/ [(y/x)^2+1] * ( -y/x^2)= -y /(x^2+y^2)而对y 求偏导数得到f 'y= 1/ [(y/x)^2+1] *(y/x)'= 1/ [(y/x)^2+1] *(y/x)'=1/ [(y/x)^2+1] * 1/x= x /(x^2+y^2)所以得到fx(1,1)= -1/2fy(1,1)= 1/2