初中数学的解一元一次方程或一元一次不等式的那个移项、合并同类项的步骤不会,总是不知道符号要怎么变

2024-11-21 00:27:19
推荐回答(3个)
回答1:

合并同类项⒈依据:乘法分配律⒉把未知数相同且其次数也相同的项合并成一项;常数计算后合并成一项 ⒊合并时次数不变,只是系数相加减。移项⒈依据:等式的性质一⒉含有未知数的项变号后都移到方程左边,把不含未知数的项移到右边。 ⒊把方程一边某项移到另一边时,一定要变号{例如:移项时将+改为-,×改为÷}。性质等式的性质一:等式两边同时加一个数或减去同一个数或同一个整式,等式仍然成立。等式的性质二:等式两边同时扩大或缩小相同的倍数(0除外),等式仍然成立。等式的性质三:等式两边同时乘方(或开方),等式仍然成立。解方程都是依据等式的这三个性质。编辑本段解法步骤使方程左右两边相等的未知数的值叫做方程的解。一般解法:⒈去分母:在方程两边都乘以各分母的最小公倍数(不含分母的项也要乘);依据:等式的性质2 ⒉去括号:一般先去小括号,再去中括号,最后去大括号,可根据乘法分配律(记住如括号外有减号或除号的话一定要变号) 依据:乘法分配律⒊移项:把方程中含有未知数的项都移到方程的一边(一般是含有未知数的项移到方程左边,而把常数项移到右边)依据:等式的性质1⒋合并同类项:把方程化成ax=b(a≠0)的形式;依据:乘法分配律(逆用乘法分配律) ⒌系数化为1:在方程两边都除以未知数的系数a,得到方程的解x=b/a.依据:等式的性质2同解方程如果两个方程的解相同,那么这两个方程叫做同解方程。 方程的同解原理:⒈方程的两边都加或减同一个数或同一个等式所得的方程与原方程是同解方程。 ⒉方程的两边同乘或同除同一个不为0的数所得的方程与原方程是同解方程。 做一元一次方程应用题的重要方法:⒈认真审题(审题) ⒉分析已知和未知量 ⒊找一个合适的等量关系 ⒋设一个恰当的未知数  ⒌列出合理的方程 (列式) ⒍解出方程(解题)  ⒎检验 ⒏写出答案(作答)ax=b(a、b为常数)[3]解:当a≠0,b=0时,ax=0x=0(此种情况与下一种一样)当a≠0时,x=b/a。当a=0,b=0时,方程有无数个解(注意:这种情况不属于一元一次方程,而属于恒等方程)当a=0,b≠0时,方程无解(此种情况也不属于一元一次方程)例:(3x+1)/2-2=(3x-2)/10-(2x+3)/5去分母(方程两边同乘各分母的最小公倍数)得:5(3x+1)-10×2=(3x-2)-2(2x+3)去括号得:15x+5-20=3x-2-4x-6移项得:15x-3x+4x=-2-6-5+20合并同类项得:16x=7系数化为1得:x=7/16。字母公式(等式的性质)a=b a+c=b+c a-c=b-c (等式的性质1)a=b ac=bca=bc(c≠0)= a÷c=b÷c(等式的性质2)检验 算出后需检验的。求根公式由于一元一次方程是基本方程,故教科书上的解法只有上述的方法。但对于标准形式下的一元一次方程 aX+b=0可得出求根公式 X=-(b/a)

回答2:

1.移项时候要变。就是把单项式或多项式从等式移动到另一边的时候,就把符号变下,比如,移单项式的例子:2X+5=7X 移项,因为是从等式的一边移到另一边,所以+5变成-5,+7X变成了-7X 所以就变成了,2X-7X=-5
2 去括号,加括号的时候如果括号前面是减号,括号里面就要变。
初一应该就这几个。。

回答3:

上课有认真听老师讲课就会