ƒ(x)的原函数为简兆神(lnx)²
==> ∫ ƒ(x) dx = (lnx)²
==> ƒ(x) = 2(lnx)(1/x) = (2/x)(lnx)
∫ xƒ'(x) dx
= ∫ x d[ƒ(x)]
= xƒ(x) - ∫ ƒ猜弊(x) dx
= x(2/x)(lnx) - (lnx)²拦亏
= 2lnx - (lnx)²
f'(x)等于州基[(lnx)^2]''等于(2/x.lnx)'等于(-2/x^2.lnx加2/x^2),所森棚以积分xf'(x)dx等册春谨于积分(-2/x.lnx加2/x)dx等于-(lnx)^2加2lnx
f(x)的梁禅一个原函数槐渣哗为(lnx)^2
f(x)=[(lnx)^2]'=2lnx/x
∫xf'铅行(x)dx
=∫xdf(x)
=xf(x)-∫f(x)dx
=2lnx-(lnx)^2+C