在三角形ABC中,AC⼀AB=cosB⼀cosC,证明B=C?。。。。求解,感谢!!!

问题补充: 是AC÷AB=cosB÷cosC
2024-11-18 14:39:11
推荐回答(3个)
回答1:

AC/sinB=AB/sinC
所以AC/AB=sinB/sinC=cosB/cosC
所以sinB/cosB=sinC/cosC
tanB=tanC,B=C.

回答2:

∵AC/sinB=AB/sinC
∴AC/AB=sinB/sinC
∵AC/AB=cosB/cosC
∴sinB/sinC=cosB/cosC
∴sinBcosC=cosBsinC
sinBcosC-cosBsinC=0
sin(B-C)=0
∵00>-C>-180
∴-180∴B-C=0
∴B=C

回答3:

令边长BC=a,AC=b,AB=c
正弦定理:b/c=sinB/sinC
又因为b/c=cosB/cosC 所以sinB/sinC=cosB/cosC 即tanB=tanC
因为0