证明:f(x)=xsinx在(0,+∞)上是无界函数。

2024-11-11 06:40:46
推荐回答(3个)
回答1:

由y=xsinx

其中:x∈R,∴y∈R

即不满足|y|≤A(A是常数)

∴y=xsinx不是有界函数

有界函数有正弦函数sinx 和余弦函数cosx

扩展资料


有界函数的图形必介于两条平行于x轴的直线y=-M和y=M之间(当自变量为x时),笼统地说某个函数是有界函数或无界函数是不确切的,必须指明所考虑的区间。

有界函数并不一定是连续的。根据定义,ƒ在D上有上(下)界,则意味着值域ƒ(D)是一个有上(下)界的数集。根据确界原理,ƒ在定义域上有上(下)确界。一个特例是有界数列,其中X是所有自然数所组成的集合N。由ƒ (x)=sinx所定义的函数f:R→R是有界的。当x越来越接近-1或1时,函数的值就变得越来越大。

回答2:

反证法,
假设函数有界,
则存在M>0,
|f(x)|≤M在(0,+∞)内处处成立
取xn=2nπ+π/2 (n∈N*)
则f(xn)=2nπ+π/2
当n>M/(2π)-1/4时,
|f(xn)|>M
∴矛盾,
∴f(x)是无界函数。

回答3:

如图所示