解同余式6x3+27x2+17x+20=0(mod30)

2024-11-21 00:07:39
推荐回答(1个)
回答1:

x满足6x³+27x²+17x+20 ≡ 0 (mod 30), 当且仅当其同时满足:
6x³+27x²+17x+20 ≡ 0 (mod 2), 6x³+27x²+17x+20 ≡ 0 (mod 3), 6x³+27x²+17x+20 ≡ 0 (mod 5).
也即x²+x ≡ 0 (mod 2), 2x+2 ≡ 0 (mod 3), x³+2x²+2x ≡ 0 (mod 5).

x²+x = x(x+1) ≡ 0 (mod 2)恒成立.
2x+2 ≡ 0 (mod 3)等价于x ≡ 2 (mod 3).
x³+2x²+2x ≡ x³-3x²+2x = x(x-1)(x-2) ≡ 0 (mod 5), 等价于x ≡ 0,1,2 (mod 5).

于是6x³+27x²+17x+20 ≡ 0 (mod 30)等价于x ≡ 2, 5, 11 (mod 15).
如果要求x mod 30, 则有x ≡ 2, 5, 11, 17, 20, 26 (mod 30).

感谢 WskTuuYtyh 指正.