(dy)/(dx)+(y/x)=(a ln x)y^2 除以y^2:y'/y^2+(1/xy)=alnx设1/y=z -y'/y^2=z' 代入:z'-z/x=-alnx 通解:z=x(C-∫alnxdx/x) =x(C-(a/2)ln²x)即:1/y=x[C-(a/2)ln²x]