如图,已知在△ABC中,∠BAC=90°,AB=AC,D在AC上,E在BA的延长线上,BD=CE,BD的延长线交CE于F,求证:

BF⊥CE
2024-11-21 17:41:37
推荐回答(2个)
回答1:

证明:∵∠BAC=90°,
∴∠CAE=∠BAC=90°.
在Rt△BAD和Rt△CAE中,
BD=CE
AB=AC
∴Rt△BAD≌Rt△CAE(HL),
∴∠ABD=∠ACE,
∴∠ABD+∠ADB=∠ACE+∠CDF.
又∵∠ABD+∠ADB=90°.
∴∠ACE+∠CDF=90°,
∴∠BFC=90°,
∴BF⊥CE.

请记得采纳 谢谢!

回答2:

证明:∵∠BAC=90°,
∴∠CAE=∠BAC=90°.
在Rt△BAD和Rt△CAE中,
{BD=CE
AB=AC
∴Rt△BAD≌Rt△CAE(HL),
∴∠ABD=∠ACE,
∴∠ABD+∠ADB=∠ACE+∠CDF.
又∵∠ABD+∠ADB=90°.
∴∠ACE+∠CDF=90°,
∴∠BFC=90°,
∴BF⊥CE.