从激光、电子显微镜、原子钟到核磁共振的医学图像显示装置,都关键地依靠了量子力学的原理和效应。对半导体的研究导致了二极管和三极管的发明,最后为现代的电子工业铺平了道路。在核武器的发明过程中,量子力学的概念也起了一个关键的作用。
在上述这些发明创造中,量子力学的概念和数学描述,往往很少直接起了一个作用,而是固体物理学、化学、材料科学或者核物理学的概念和规则,起了主要作用,在所有这些学科中,量子力学均是其基础,这些学科的基本理论,全部是建立在量子力学之上的。
量子力学问题
按动力学意义上说,量子力学的运动方程是,当体系的某一时刻的状态被知道时,可以根据运动方程预言它的未来和过去任意时刻的状态。
量子力学的预言和经典物理学运动方程(质点运动方程和波动方程)的预言在性质上是不同的。在经典物理学理论中,对一个体系的测量不会改变它的状态,它只有一种变化,并按运动方程演进。因此,运动方程对决定体系状态的力学量可以作出确定的预言。
量子力学可以算作是被验证的最严密的物理理论之一了。至今为止,所有的实验数据均无法推翻量子力学。大多数物理学家认为,它“几乎”在所有情况下,正确地描写能量和物质的物理性质。
虽然如此,量子力学中,依然存在着概念上的弱点和缺陷,除上述的万有引力的量子理论的缺乏外,至今为止对量子力学的解释存在着争议。
以上内容参考 百度百科-量子力学
量子力学的应用 在许多现代技术装备中,量子物理学的效应起了重要的作用。从激光、电子显微镜、原子钟到核磁共振的医学图像显示装置,都关键地依靠了量子力学的原理和效应。对半导体的研究导致了二极管和三极管的发明,最后为现代的电子工业铺平了道路。在核武器的发明过程中,量子力学的概念也起了一个关键的作用。 在上述这些发明创造中,量子力学的概念和数学描述,往往很少直接起了一个作用,而是固体物理学、化学、材料科学或者核物理学的概念和规则,起了主要作用,但是,在所有这些学科中,量子力学均是其基础,这些学科的基本理论,全部是建立在量子力学之上的。 以下仅能列举出一些最显著的量子力学的应用,而且,这些列出的例子,肯定也非常不完全。实际上,在现代的技术中,量子力学无处不在。 原子物理和化学 任何物质的化学特性,均是由其原子和分子的电子结构所决定的。通过解析包括了所有相关的原子核和电子的多粒子薛定谔方程,可以计算出该原子或分子的电子结构。在实践中,人们认识到,要计算这样的方程实在太复杂,而且在许多情况下,只要使用简化的模型和规则,就足以确定物质的化学特性了。在建立这样的简化的模型中,量子力学起了一个非常重要的作用。 一个在化学中非常常用的模型是原子轨道。在这个模型中,分子的电子的多粒子状态,通过将每个原子的电子单粒子状态加到一起形成。这个模型包含着许多不同的近似(比如忽略电子之间的排斥力、电子运动与原子核运动脱离等等),但是它可以近似地、准确地描写原子的能级。除比较简单的计算过程外,这个模型还可以直觉地给出电子排布以及轨道的图像描述。 通过原子轨道,人们可以使用非常简单的原则(洪德定则)来区分电子排布。化学稳定性的规则(八隅律、幻数)也很容易从这个量子力学模型中推导出来。 通过将数个原子轨道加在一起,可以将这个模型扩展为分子轨道。由于分子一般不是球对称的,因此这个计算要比原子轨道要复杂得多。理论化学中的分支,量子化学和计算机化学,专门使用近似的薛定谔方程,来计算复杂的分子的结构及其化学特性的学科。 原子核物理学 原子核物理学是研究原子核性质的物理学分支。它主要有三大领域:研究各类次原子粒子与它们之间的关系、分类与分析原子核的结构、带动相应的核子技术进展。 固体物理学 以上这些例子,可以使人想象出固体物理有多么多样性。事实上,凝聚态物理学是物理学中最大的分支,而所有凝聚态物理学中的现象,从微观角度上,都只有通过量子力学,才能正确地被解释。使用经典物理,顶多只能从表面上和现象上,提出一部分的解释。