解答:(1)证明:△=(2k+3)2-4(k2+3k+2)=1,∵△=1>0,∴方程有两个不相等的实数根;(2)解:根据题意得k2+3k+2=6,解得k1=1,k2=-4;(3)解:由于AB≠AC,则AB=BC=5时,把x=5代入x2-(2k+3)x+k2+3k+2=0得25-5(2k+3)+k2+3k+2=0,解得k1=3,k2=4,当k=3时,△ABC的周长=5+2k+3=5+6+3=14;当k=4时,△ABC的周长=5+2k+3=5+8+3=16.