在△ABC中,AB=AC,点D是直线BC上一点(不与B、C重合),以AD为一边在AD的右侧作△ADE,使AD=AE,∠DAE=

2024-11-30 10:27:32
推荐回答(1个)
回答1:

解:(1)90°. 理由:
∵∠BAC=∠DAE,
∴∠BAC﹣∠DAC=∠DAE﹣∠DAC.
即∠BAD=∠CAE.
在△ABD与△ACE中,
∴△ABD≌△ACE,
∴∠B=∠ACE.
∴∠B+∠ACB=∠ACE+∠ACB,
∴∠BCE=∠B+∠ACB,
又∵∠BAC=90°
∴∠BCE=90°;
(2)①α+β=180°, 理由:
∵∠BAC=∠DAE,
∴∠BAC﹣∠DAC=∠DAE﹣∠DAC.
即∠BAD=∠CAE.
在△ABD与△ACE中,
∴△ABD≌△ACE,
∴∠B=∠ACE.
∴∠B+∠ACB=∠ACE+∠ACB.
∴∠B+∠ACB=β,
∴α+∠B+∠ACB=180°,
∴α+β=180°;
②当点D在射线BC上时,α+β=180°; 理由:
∵∠BAC=∠DAE,
∴∠BAD=∠CAE,
∵AB=AC,AD=AE,
∴△ABD≌△ACE(SAS),
∴∠B=∠ACE,
∵∠BAC+∠B+∠BCA=180°,
∴∠BAC+∠BCE=∠BAC+∠BCA+∠ACE=∠BAC+∠BCA+∠B=180°,
∴ α+β=180°;
当点D在射线BC的反向延长线上时,α=β
理由:∵∠DAE=∠BAC,
∴∠DAB=∠EAC,
∵AD=AE,AB=AC,
∴△ADB≌△AEC(SAS),
∴∠ABD=∠ACE,
∵∠ABD=∠BAC+∠ACB,∠ACE=∠BCE+∠ACB,
∴∠BAC=∠BCE,
即α=β.