(Ⅰ)设{an}的公差为d,数列{bn}的公比为q,则
∵a1=b1=1,a2+b3=a3,S5=5(T3+b2),
∴q2=d,1+2d=1+2q+q2,
∴q2-2q=0,
∵q≠0,∴q=2,∴d=4
∴an=4n-3,bn=2n-1;
(Ⅱ)∵
=bn
TnTn+1
=bn+1
qTnTn+1
(1 q
?1 Tn
)1 Tn+1
∴
+b1
T1T2
+…+b2
T2T3
=bn
TnTn+1
(1 q
?1 T1
+1 T2
?1 T2
+…+1 T3
?1 Tn
)1 Tn+1
=
(1 q
?1 T1
)=1 Tn+1
(1-1 q
).2
2n+1?1