求微分方程y✀=10^x+y满足初始条件y|x=0=-1的特解

习题7-2 第三小题 过程清楚详细点~急急急!
2024-11-18 05:14:56
推荐回答(2个)
回答1:

dy/dx=10^x · 10^y
dy/10^y =10^x dx
-(10)^(-y )d(-y)=10^x dx
两边积分得
-10^(-y) /ln10=10^x/ln10 +C1
10^(-y)=-10^x-C1ln10=-10^x+C
y=-lg(-10^x +C)
y|x=0=-1代入得C=11
所以特解为y=-lg(11-10^x)

回答2: