=∫xdf(x)=xf(x)-∫f(x)dxf(x)的原函数为sin2x即:f(x)=(sin2x)', 则f(x)=2cos2x所以, 原式=2xcos2x-sin2x
F(x)=∫f(x)dx=sin2x , F'(x)=f(x)=2cos2x , f'(x)= -4sin2x∫xf'(x)dx = -4∫xsin2xdx=2∫xd(cos2x)=2xcos2x - 2∫cos2xdx=2xcos2x - ∫cos2xd(2x)=2xcos2x - sin2x