1的3次方+2的3次方+3的3次方+4的3次方+…+n的3次方 =(1+2+3+4+...+n)² =[n*(n+1)/2]² =(1/4)*n²*(n+1)²
n^3=1/3[n*(n+1)*(n+2)-(n-1)*n*(n+1)]-n^2而n^2=1/2[n*(n+1)-(n-1)*n]联立就可以求出你需要的答案了
=1/4*(n+1)^4-1/2*(n+1)^3+1/4*(n+1)^2 =1/4*n^4+1/2*n^3+1/4*n^2
(1+2+……n)方