∵a1+a2=1,a2+a3=2,a3+a4=3,…,a99+a100=99,a100+a1=100,
∴a1+a2+a3+…a100=
(a1+a2+a2+a3+a3+a4+,…,a99+a100+a100+a1)=1 2
(1+2+3+…+100)=1 2
×5050=2525.1 2
故填:2525.
a1+a2+a2+a3+a3+a4+...+a99+a100+a100+a1=1+2+3+...+100=(1+100)×100÷2=101*50=5050;
2(a1+a2+a3+a4+...+a99+a100)=5050;
a1+a2+a3+a4+...+a99+a100=5050÷2=2525