已知a1+a2=1,a2+a3=2,a3+a4=3,…,a99+a100=99,a100+a1=100,那么a1+a2+a3+…a100=______

2024-12-03 11:01:18
推荐回答(2个)
回答1:

∵a1+a2=1,a2+a3=2,a3+a4=3,…,a99+a100=99,a100+a1=100,
∴a1+a2+a3+…a100=

1
2
(a1+a2+a2+a3+a3+a4+,…,a99+a100+a100+a1)=
1
2
(1+2+3+…+100)=
1
2
×
5050=2525.
故填:2525.

回答2:

a1+a2+a2+a3+a3+a4+...+a99+a100+a100+a1=1+2+3+...+100=(1+100)×100÷2=101*50=5050;
2(a1+a2+a3+a4+...+a99+a100)=5050;
a1+a2+a3+a4+...+a99+a100=5050÷2=2525