spss主成分分析结果怎么看??急求

2024-11-28 16:15:34
推荐回答(4个)
回答1:

KMO检验用于检查变量间的偏相关性 一般认为该值大于0.9时效果最佳 0.7以上尚可,0.6时效果较差

Bartlett's球形检验用于检验相关阵是否是单位阵 P<0.01说明指标间并非独立,取值是有关系的。可以进行因子分析

根据上图 可以看出一共提取了3个主成分 可是能解释的方差为69.958%

软件默认的是提取特征根大于1的主成分 如果加上第四个主成分的话可以解释的变异度为86.26%
所以结合专业知识 可以考虑是不是增加一个主成分。

扩展资料:

软件模块实际上就是将以前单独发行的SPSS AnswerTree软件整合进了SPSS平台。笔者几年前在自己的网站上介绍SPSS 11的新功能时,曾经很尖锐地指出SPSS的产品线过于分散,应当把各种功能较单一的小软件,如AnswerTree、Sample Power等整合到SPSS等几个平台上去。

看来SPSS公司也意识到了这一点,而AnswerTree就是在此背景下第一个被彻底整合的产品。

Classification Tree模块基于数据挖掘中发展起来的树结构模型对分类变量或连续变量进行预测,可以方便、快速的对样本进行细分,而不需要用户有太多的统计专业知识。在市场细分和数据挖掘中有较广泛的应用。

已知该模块提供了CHAID、Exhaustive CHAID和C&RT三种算法,在AnswerTree中提供的QUEST算法尚不能肯定是否会被纳入。

为了方便新老用户的使用,Tree模块在操作方式上不再使用AnswerTree中的向导方式,而是SPSS近两年开始采用的交互式选项卡对话框。但是,整个选项卡界面的内容实际上是和原先的向导基本一致的,另外,模型的结果输出仍然是AnswerTree中标准的树形图,这使得AnswerTree的老用户基本上不需要专门的学习就能够懂得如何使用该模块。

由于树结构模型的方法体系和传统的统计方法完全不同,贸然引入可能会引起读者统计方法体系的混乱。为此,本次编写的高级教程并未介绍该模块,而将在高级教程的下一个版本,以及关于市场细分问题的教材中对其加以详细介绍。

参考资料:百度百科-spss

回答2:

spss如何做主成分分析

主成分分析的主要原理是寻找一个适当的线性变换:
•将彼此相关的变量转变为彼此独立的新变量;
•方差较大的几个新变量就能综合反应原多个变量所包含的主要信息;
•新变量各自带有独特的专业含义。
住成分分析的作用是:
•减少指标变量的个数
•解决多重相关性问题
步骤阅读
工具/原料
spss20.0
方法/步骤
>01

先在spss中准备好要处理的数据,然后在菜单栏上执行:analyse--dimension reduction--factor analyse。打开因素分析对话框
>02

我们看到下图就是因素分析的对话框,将要分析的变量都放入variables窗口中
>03

点击descriptives按钮,进入次级对话框,这个对话框可以输出我们想要看到的描述统计量
>04

因为做主成分分析需要我们看一下各个变量之间的相关,对变量间的关系有一个了解,所以需要输出相关,勾选coefficience,点击continue,返回主对话框
>05

回到主对话框,点击ok,开始输出数据处理结果
>06
你看到的这第一个表格就是相关矩阵,现实的是各个变量之间的相关系数,通过相关系数,你可以看到各个变量之间的相关,进而了解各个变量之间的关系
>07

第二个表格显示的主成分分析的过程,我们看到eigenvalues下面的total栏,他的意思就是特征根,他的意义是主成分影响力度的指标,一般以1为标准,如果特征根小于1,说明这个主因素的影响力度还不如一个基本的变量。所以我们只提取特征根大于1的主成分。如图所示,前三个主成分就是大于1的,所以我们只能说有三个主成分。另外,我们看到第一个主成分方差占所有主成分方差的46.9%,第二个占27.5%,第三个占15.0%。这三个累计达到了89.5%。

回答3:

建议可以看下spssau的帮助手册,有详细的说明:主成分分析-SPSSAU

回答4:

KMO检验用于检查变量间的偏相关性 一般认为该值大于0.9时效果最佳 0.7以上尚可,0.6时效果较差
Bartlett's球形检验用于检验相关阵是否是单位阵 P<0.01说明指标间并非独立,取值是有关系的。可以进行因子分析
根据上图 可以看出一共提取了3个主成分 可是能解释的方差为69.958%

软件默认的是提取特征根大于1的主成分 如果加上第四个主成分的话可以解释的变异度为86.26%
所以结合专业知识 可以考虑是不是增加一个主成分。