(1)f′(x)=3x2-2ax+b,
因为函数f(x)在x=-1和x=3时取得极值,
所以
,即
f′(?1)=0 f′(3)=0
,解得a=3,b=-9,
3+2a+b=0 27?6a+b=0
所以a=3,b=-9.
(2)由(1)知,f(x)=x3-3x2-9x+c,f′(x)=3x2-6x-9=3(x+1)(x-3),
当-2≤x<-1时,f′(x)>0,f(x)递增,当-1<x<3时,f′(x)<0,f(x)递减,当3<x≤6时,f′(x)>0,f(x)递增,
所以当x=-1时f(x)取得极大值,为f(-1)=5+c;
又f(6)=54+c,
所以f(x)在[-2,6]上的最大值为54+c,
当x∈[-2,6]时,f(x)<2C恒成立等价于f(x)max<2c,即54+c<2c,解得c>54.
故c的取值范围为:c>54.