(n+1)^3-n^3=3n^2+3n+11^2=12^3-1^3=3*1^2+3*1+13^3-2^3=3*2^2+3*2+1.................................(n+1)^3-n^3=3*n^2+3n+1累加得:(n+1)^3=2Sn+3(1+2+....+n)+nSn=n(n+1)(2n+1)/6原式=S(n-1)=n(n-1)(2n-1)/6
=(n-1)(n-1+1)(2(n-1)+1)/6=(n-1)n(2n-1)/6