A.∵logπe= 1 logeπ >0,∴(logπe)2+ 1 (logπe)2 >2.故A正确;B.∵logπe>0,logeπ>0,∴logπ e +loge π = 1 2 (logπe+logeπ)> logπe×logeπ =1,故B正确;D.∵e2+π2>2eπ,∴2(e2+π2)>e2+2eπ+π2=(e+π)2,∴D正确.C.∵e<π,∴ee<eπ,∴ee-π<eπ-π,故C不成立.故选C.