二分之一加三分之一加四分之一......加n分之一,怎么计算

2024-12-03 00:54:14
推荐回答(1个)
回答1:

它是实数,所以它不是有理数就是无理数,而上两层的人说“谈不上到底是无理数还是有理数”的说法显然是错误的。而根据种种依据可判断它是无理数。
具体证明过程如下:
首先我们可以知道实数包括有理数和无理数。而有理数又包括有限小数和无限循环小数,有理数都可以划成两个有限互质整数相除的形式(整数除外)。而1+1/2+1/3+1/4+1/5+...+1/n
(n为无限大)通分以后的分子和分母都是无穷大,不是有限整数,且不能约分,所以它不属于有理数,因此它是无理数。
其实无穷个有理数相加未必就是有理数,而有可能等于无理数。我可以举个很简单的例子。
圆周率pi=3.1415926...是个无理数大家都知道吧,我可以把它分解成pi=3+0.1+0.04+0.001+0.0005+...的形式,等号右侧的每一项都是有理数,那么我们能说pi是有理数吗?当然不能。所以无穷个有理数相加可能是无理数。
那么为什么我说1+1/2+1/3+1/4+1/5+...+1/n
(n为无限大)是无理数而不是有理数呢?我再从一种角度给你证明。
1+1/2+1/3+1/4+1/5+...+1/n
(n为无限大)是一个无穷小数你承认吧,不然我们讨论有理数还是无理数就没什么意义了。无限循环小数都有循环节,所以无限循
环小数都可以根据等比数列知识划成两个互质整数相除的形式。
而1+1/2+1/3+1/4+1/5+...+1/n
(n为无限大)不存在循环节,不可能根据等比数列知识划成两个互质整数相除的形式。所以它终究是无理数。
这是有名的调和级数,应该是高数中的东西,这题目用n!无济于事的
当n->∞,1+1/2+1/3+1/4+1/5+...+1/n->∞,是个发散级数
当n很大时,有个近似公式:1+1/2+1/3+1/4+1/5+...+1/n=γ+ln(n)
γ是欧拉常数,γ=0.57721566490153286060651209...
ln(n)是n的自然对数(即以e为底的对数,e=2.71828...)