∵a=2bcosC,由正弦定理可得,2sinBcosC=sinA=sin(B+C)=sinBcosC+cosBsinC,∴sinBcosC-cosBsinC=0,即sin(B-C)=0,∴B-C=0,∴B=C,∴b=c,∴bcosB=ccosC,∵acosA+bcosB=ccosC,∴acosA=0,∵a≠0,∴cosA=0,∴A= π 2 ,∴△ABC是等腰直角三角形.