计算过程如下:
扩展资料:
一个函数,可以存在不定积分,而不存在定积分,也可以存在定积分,而没有不定积分。连续函数,一定存在定积分和不定积分。
若在有限区间[a,b]上只有有限个间断点且函数有界,则定积分存在;若有跳跃、可去、无穷间断点,则原函数一定不存在,即不定积分一定不存在。
您好,答案如图所示:
很高兴能回答您的提问,您不用添加任何财富,只要及时采纳就是对我们最好的回报
。若提问人还有任何不懂的地方可随时追问,我会尽量解答,祝您学业进步,谢谢。
☆⌒_⌒☆ 如果问题解决后,请点击下面的“选为满意答案”
这个积分有点难度,可以如图改写一下利用凑微分法求出答案。
简单分析一下,详情如图所示
你好!
∫ dx/[x(1+x⁴)]
令u=x⁴,du=4x³ dx
原式= ∫ 1/[x*(1+u)] * du/(4x³)
= (1/4)∫ 1/[u(u+1)] du
= (1/4)∫ (u+1-u)/[u(u+1)] du
= (1/4)∫ [1/u - 1/(u+1)] du
= (1/4)(ln|u| - ln|u+1|) + C
= (1/4)ln|x^4| - (1/4)ln|x^4+1| + C
= ln|x| - (1/4)ln(x^4+1) + C