用SPSS做多元回归分析得出的指标结果怎么分析啊?

2024-12-05 05:36:06
推荐回答(3个)
回答1:

表一的r值是复相关系数,r方是决定系数,r方表示你的模型可以解释百分之多少的你的因变量,比如你的例子里就是可以解释你的因变量的百分之八十。很高了。表二的sig是指你的回归可不可信,你的sig是0。000,说明在0.01的水平上你的模型显著回归,方程具有统计学意义。

SPSS(全称:Statistical Product and Service Solutions)是世界上最早的统计分析软件,由美国斯坦福大学的三位研究生Norman H. Nie、C.Hadlai (Tex) Hull和Dale H. Bent于1968年研发成功。

SPSS采用类似EXCEL表格的方式输入与管理数据,数据接口较为通用,能方便的从其他数据库中读入数据。

回答2:

一、案例说明

1.案例数据

在“工资影响因素”的调查问卷中,调查了每个人的起始工资、工作经验、受教育年限、受雇月数、职位等级以及当前工资六个方面。

2.分析目的

目的是建立以当前工资为因变量的回归模型,并得出结论。[案例来源于:SPSS统计分析(第5版)卢纹岱,朱红兵主编,案例有一些变动 具体请看分析。]

分析结果:

从上表可以看出,离差平方和为1461615.460,残差平方和为579191.966,而回归平方和为882423.494。回归方程的显著性检验中,统计量F=178.635,对应的p值远远小于0.05,被解释变量的线性关系是显著的,可以建立模型。建立模型后,需要查看模型拟合优度是否可以,其中就可以查看R方与调整R方值。

从上表可知,将起始工资,受教育年限,职位等级,工作经验作为自变量,而将当前工资作为因变量进行线性回归分析,从上表可以看出,模型R方值为0.604,调整R方为0.600,其中R方是决定系数,模型拟合指标。反应Y的波动有多少比例能被X的波动描述。调整R方也是模型拟合指标。当x个数较多是调整R²比R²更为准确。意味着起始工资,受教育年限,职位等级,工作经验可以解释当前工资的60.4%变化原因。可见,模型拟合优度较好,说明被解释变量可以被模型解释的部分较多。接下来查看变量是否具有多重共线性。

从上表可知,将起始工资,受教育年限,工作经验,职位等级作为自变量,而将当前工资作为因变量进行线性回归分析,从上表可以看出,模型公式为:当前工资=-41.634 + 0.425*起始工资 + 6.176*受教育年限-0.051*工作经验 + 29.819*职位等级。

上图所示,回归方程的常数项约为-41.63,以及起始工资、受教育年限、工作经验以及职位等级的非标准化系数分别为0.425、6.176、-0.051、29.819。表中4个变量的p值均小于0.05,并且VIF值均正常,因此4个变量可以显示在模型中。

回答3:

表一的r值是复相关系数,r方是决定系数,r方表示你的模型可以解释百分之多少的你的因变量,比如你的例子里就是可以解释你的因变量的百分之八十。很高了。表二的sig是指你的回归可不可信,你的sig是0。000,说明在0.01的水平上你的模型显著回归,方程具有统计学意义。表三的sig值表示各个变量在方程中是否和因变量有线性关系,sig越大,统计意义越不显著,你的都小于0.05,从回归意义上说,你这个模型还蛮好的。vif是检验多重共线性的,你的vif有一点大,说明多重共线性比较明显,可以用岭回归或者主成分回归消除共线性。你要是愿意改小,应该也没关系。
ppv课,大数据培训专家,随时随地为你充电,来ppv看看学习视频,助你成就职场之路。更有精品学习心得和你分享哦。