求由方程组x=u+v,y=u²+v²,z=u³+v³ 所确定的隐函数z=f(x,y)在(1,1)处的对x的偏导数解:x=u+v........①; y=u²+v².........②由①得x²=(u+v)²=u²+2uv+v²=y+2uv;∴uv=(x²-y)/2.......③∴z=u³+v³=(u+v)(u²-uv+v²)=x[y-(x²-y)/2]=xy-(x³-xy)/2;∴∂z/∂x=y-(3x²-y)/2∴x=1,y=1时 ∂z/∂x=1-(3-1)/2=1-1=0.