【在直角三角形中,30°角庆手迅所对的直角边等于薯游斜边的一半】
设在直角三角形ABC中,∠BAC=90°,∠ACB=30°,求证:AB=1/2BC。
【证法1】
延长BA到D,使AD=AB,连接CD。
∵∠BAC=90°,AB=AD,
∴AC垂直平分BD,
∴BC=CD(垂直平分线上的点到线段两端距离相等誉此),
∵∠B=90°-∠ACB=90°-30°=60°,
∴△BCD是等边三角形(有一个角是60°的等腰三角形是等边三角形),
∴BD=BC,
∵AB=AD=1/2BD,
∴AB=1/2BC。
【证法2】
取BC的中点D,连接AD。
∵∠BAC=90°,
∴AD=1/2BC=BD(直角三角形斜边中线等于斜边的一半),
∵∠B=90°-∠ACB=90°-30°=60°,
∴△ABD是等边三角形(有一个角是60°的等腰三角形是等边三角形),
∴AB=BD,
∴AB=1/2BC。
这是一条几何中的定理,三种证明方法如下:
直角三角形性质:
直角三角芦绝旁形是一种特殊的三角形,它除了具有一般三角形宏悄的性质外,具有一些特殊的性质:
性质1:直角三角形两直角边a,b的平方和等于斜边c的平方。即。如图,∠BAC=90°,则AB2+AC2=BC2(勾股定理)
性质2:在直角三角形中,两个锐角互余。如陪橡图,若∠BAC=90°,则∠B+∠C=90°
性质3:在直角三角形中,斜边上的中线等于斜边的一半(即直角三角形的外心位于斜边的中点,外接圆半径R=C/2)。
性质4:直角三角形的两直角边的乘积等于斜边与斜边上高的乘积。
延长BA到D,使AD=AB,连接CD。
∵∠BAC=90°,AB=AD,
∴AC垂直平分BD,
∴BC=CD(垂直平分线上的点到线段两端距离相等),
∵∠B=90°-∠ACB=90°-30°=60°,
∴△BCD是等边三早喊角圆锋形(有一个角是60°的等腰三角形是等边三角形),
∴橘睁晌BD=BC,
∵AB=AD=1/2BD,
∴AB=1/2BC。